Decoupled pyramid correlation network for liver tumor segmentation from CT images

Purpose Automated liver tumor segmentation from computed tomography (CT) images is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2022-11, Vol.49 (11), p.7207-7221
Hauptverfasser: Zhang, Yao, Yang, Jiawei, Liu, Yang, Tian, Jiang, Wang, Siyun, Zhong, Cheng, Shi, Zhongchao, Zhang, Yang, He, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7221
container_issue 11
container_start_page 7207
container_title Medical physics (Lancaster)
container_volume 49
creator Zhang, Yao
Yang, Jiawei
Liu, Yang
Tian, Jiang
Wang, Siyun
Zhong, Cheng
Shi, Zhongchao
Zhang, Yang
He, Zhiqiang
description Purpose Automated liver tumor segmentation from computed tomography (CT) images is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on fully convolutional network (FCN) for medical image segmentation drew on the success of learning discriminative pyramid features. In this paper, we propose a decoupled pyramid correlation network (DPC‐Net) that exploits attention mechanisms to fully leverage both low‐ and high‐level features embedded in FCN to segment liver tumor. Methods We first design a powerful pyramid feature encoder (PFE) to extract multilevel features from input images. Then we decouple the characteristics of features concerning spatial dimension (i.e., height, width, depth) and semantic dimension (i.e., channel). On top of that, we present two types of attention modules, spatial correlation (SpaCor) and semantic correlation (SemCor) modules, to recursively measure the correlation of multilevel features. The former selectively emphasizes global semantic information in low‐level features with the guidance of high‐level ones. The latter adaptively enhance spatial details in high‐level features with the guidance of low‐level ones. Results We evaluate the DPC‐Net on MICCAI 2017 LiTS Liver Tumor Segmentation (LiTS) challenge data set. Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) are employed for evaluation. The proposed method obtains a DSC of 76.4% and an ASSD of 0.838 mm for liver tumor segmentation, outperforming the state‐of‐the‐art methods. It also achieves a competitive result with a DSC of 96.0% and an ASSD of 1.636 mm for liver segmentation. Conclusions The experimental results show promising performance of DPC‐Net for liver and tumor segmentation from CT images. Furthermore, the proposed SemCor and SpaCor can effectively model the multilevel correlation from both semantic and spatial dimensions. The proposed attention modules are lightweight and can be easily extended to other multilevel methods in an end‐to‐end manner.
doi_str_mv 10.1002/mp.15723
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2671274319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671274319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3213-56ed2616aac69a91a474f9047c39f587f3fc9b2c1e7bca200c76e00a31179013</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqUg8QUoSzYp40fseonKUwIBUveR60yqQFwHO6Hq3xNIgRWrmcXR0dUh5JTClAKwC9dMaaYY3yNjJhRPBQO9T8YAWqRMQDYiRzG-AoDkGRySEc8kgxkXY_JyhdZ3TY1F0myDcVWRWB8C1qat_DpZY7vx4S0pfUjq6gND0nau_yOuHK7bASqDd8l8kVTOrDAek4PS1BFPdndCFjfXi_ld-vB0ez-_fEgtZ5SnmcSCSSqNsVIbTY1QotQglOW6zGaq5KXVS2YpqqU1DMAqiQCGU6o0UD4h54O2Cf69w9jmrooW69qs0XcxZ1JRpgSn-g-1wccYsMyb0G8N25xC_tUvd03-3a9Hz3bWbumw-AV_gvVAOgCbqsbtv6L88XkQfgK_VHig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671274319</pqid></control><display><type>article</type><title>Decoupled pyramid correlation network for liver tumor segmentation from CT images</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yao ; Yang, Jiawei ; Liu, Yang ; Tian, Jiang ; Wang, Siyun ; Zhong, Cheng ; Shi, Zhongchao ; Zhang, Yang ; He, Zhiqiang</creator><creatorcontrib>Zhang, Yao ; Yang, Jiawei ; Liu, Yang ; Tian, Jiang ; Wang, Siyun ; Zhong, Cheng ; Shi, Zhongchao ; Zhang, Yang ; He, Zhiqiang</creatorcontrib><description>Purpose Automated liver tumor segmentation from computed tomography (CT) images is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on fully convolutional network (FCN) for medical image segmentation drew on the success of learning discriminative pyramid features. In this paper, we propose a decoupled pyramid correlation network (DPC‐Net) that exploits attention mechanisms to fully leverage both low‐ and high‐level features embedded in FCN to segment liver tumor. Methods We first design a powerful pyramid feature encoder (PFE) to extract multilevel features from input images. Then we decouple the characteristics of features concerning spatial dimension (i.e., height, width, depth) and semantic dimension (i.e., channel). On top of that, we present two types of attention modules, spatial correlation (SpaCor) and semantic correlation (SemCor) modules, to recursively measure the correlation of multilevel features. The former selectively emphasizes global semantic information in low‐level features with the guidance of high‐level ones. The latter adaptively enhance spatial details in high‐level features with the guidance of low‐level ones. Results We evaluate the DPC‐Net on MICCAI 2017 LiTS Liver Tumor Segmentation (LiTS) challenge data set. Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) are employed for evaluation. The proposed method obtains a DSC of 76.4% and an ASSD of 0.838 mm for liver tumor segmentation, outperforming the state‐of‐the‐art methods. It also achieves a competitive result with a DSC of 96.0% and an ASSD of 1.636 mm for liver segmentation. Conclusions The experimental results show promising performance of DPC‐Net for liver and tumor segmentation from CT images. Furthermore, the proposed SemCor and SpaCor can effectively model the multilevel correlation from both semantic and spatial dimensions. The proposed attention modules are lightweight and can be easily extended to other multilevel methods in an end‐to‐end manner.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.15723</identifier><identifier>PMID: 35620834</identifier><language>eng</language><publisher>United States</publisher><subject>attention mechanism ; computed tomography ; liver segmentation ; liver tumor segmentation</subject><ispartof>Medical physics (Lancaster), 2022-11, Vol.49 (11), p.7207-7221</ispartof><rights>2022 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3213-56ed2616aac69a91a474f9047c39f587f3fc9b2c1e7bca200c76e00a31179013</citedby><cites>FETCH-LOGICAL-c3213-56ed2616aac69a91a474f9047c39f587f3fc9b2c1e7bca200c76e00a31179013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.15723$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.15723$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35620834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Tian, Jiang</creatorcontrib><creatorcontrib>Wang, Siyun</creatorcontrib><creatorcontrib>Zhong, Cheng</creatorcontrib><creatorcontrib>Shi, Zhongchao</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>He, Zhiqiang</creatorcontrib><title>Decoupled pyramid correlation network for liver tumor segmentation from CT images</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose Automated liver tumor segmentation from computed tomography (CT) images is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on fully convolutional network (FCN) for medical image segmentation drew on the success of learning discriminative pyramid features. In this paper, we propose a decoupled pyramid correlation network (DPC‐Net) that exploits attention mechanisms to fully leverage both low‐ and high‐level features embedded in FCN to segment liver tumor. Methods We first design a powerful pyramid feature encoder (PFE) to extract multilevel features from input images. Then we decouple the characteristics of features concerning spatial dimension (i.e., height, width, depth) and semantic dimension (i.e., channel). On top of that, we present two types of attention modules, spatial correlation (SpaCor) and semantic correlation (SemCor) modules, to recursively measure the correlation of multilevel features. The former selectively emphasizes global semantic information in low‐level features with the guidance of high‐level ones. The latter adaptively enhance spatial details in high‐level features with the guidance of low‐level ones. Results We evaluate the DPC‐Net on MICCAI 2017 LiTS Liver Tumor Segmentation (LiTS) challenge data set. Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) are employed for evaluation. The proposed method obtains a DSC of 76.4% and an ASSD of 0.838 mm for liver tumor segmentation, outperforming the state‐of‐the‐art methods. It also achieves a competitive result with a DSC of 96.0% and an ASSD of 1.636 mm for liver segmentation. Conclusions The experimental results show promising performance of DPC‐Net for liver and tumor segmentation from CT images. Furthermore, the proposed SemCor and SpaCor can effectively model the multilevel correlation from both semantic and spatial dimensions. The proposed attention modules are lightweight and can be easily extended to other multilevel methods in an end‐to‐end manner.</description><subject>attention mechanism</subject><subject>computed tomography</subject><subject>liver segmentation</subject><subject>liver tumor segmentation</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EoqUg8QUoSzYp40fseonKUwIBUveR60yqQFwHO6Hq3xNIgRWrmcXR0dUh5JTClAKwC9dMaaYY3yNjJhRPBQO9T8YAWqRMQDYiRzG-AoDkGRySEc8kgxkXY_JyhdZ3TY1F0myDcVWRWB8C1qat_DpZY7vx4S0pfUjq6gND0nau_yOuHK7bASqDd8l8kVTOrDAek4PS1BFPdndCFjfXi_ld-vB0ez-_fEgtZ5SnmcSCSSqNsVIbTY1QotQglOW6zGaq5KXVS2YpqqU1DMAqiQCGU6o0UD4h54O2Cf69w9jmrooW69qs0XcxZ1JRpgSn-g-1wccYsMyb0G8N25xC_tUvd03-3a9Hz3bWbumw-AV_gvVAOgCbqsbtv6L88XkQfgK_VHig</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Zhang, Yao</creator><creator>Yang, Jiawei</creator><creator>Liu, Yang</creator><creator>Tian, Jiang</creator><creator>Wang, Siyun</creator><creator>Zhong, Cheng</creator><creator>Shi, Zhongchao</creator><creator>Zhang, Yang</creator><creator>He, Zhiqiang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202211</creationdate><title>Decoupled pyramid correlation network for liver tumor segmentation from CT images</title><author>Zhang, Yao ; Yang, Jiawei ; Liu, Yang ; Tian, Jiang ; Wang, Siyun ; Zhong, Cheng ; Shi, Zhongchao ; Zhang, Yang ; He, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3213-56ed2616aac69a91a474f9047c39f587f3fc9b2c1e7bca200c76e00a31179013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention mechanism</topic><topic>computed tomography</topic><topic>liver segmentation</topic><topic>liver tumor segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Tian, Jiang</creatorcontrib><creatorcontrib>Wang, Siyun</creatorcontrib><creatorcontrib>Zhong, Cheng</creatorcontrib><creatorcontrib>Shi, Zhongchao</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>He, Zhiqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yao</au><au>Yang, Jiawei</au><au>Liu, Yang</au><au>Tian, Jiang</au><au>Wang, Siyun</au><au>Zhong, Cheng</au><au>Shi, Zhongchao</au><au>Zhang, Yang</au><au>He, Zhiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupled pyramid correlation network for liver tumor segmentation from CT images</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2022-11</date><risdate>2022</risdate><volume>49</volume><issue>11</issue><spage>7207</spage><epage>7221</epage><pages>7207-7221</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose Automated liver tumor segmentation from computed tomography (CT) images is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on fully convolutional network (FCN) for medical image segmentation drew on the success of learning discriminative pyramid features. In this paper, we propose a decoupled pyramid correlation network (DPC‐Net) that exploits attention mechanisms to fully leverage both low‐ and high‐level features embedded in FCN to segment liver tumor. Methods We first design a powerful pyramid feature encoder (PFE) to extract multilevel features from input images. Then we decouple the characteristics of features concerning spatial dimension (i.e., height, width, depth) and semantic dimension (i.e., channel). On top of that, we present two types of attention modules, spatial correlation (SpaCor) and semantic correlation (SemCor) modules, to recursively measure the correlation of multilevel features. The former selectively emphasizes global semantic information in low‐level features with the guidance of high‐level ones. The latter adaptively enhance spatial details in high‐level features with the guidance of low‐level ones. Results We evaluate the DPC‐Net on MICCAI 2017 LiTS Liver Tumor Segmentation (LiTS) challenge data set. Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) are employed for evaluation. The proposed method obtains a DSC of 76.4% and an ASSD of 0.838 mm for liver tumor segmentation, outperforming the state‐of‐the‐art methods. It also achieves a competitive result with a DSC of 96.0% and an ASSD of 1.636 mm for liver segmentation. Conclusions The experimental results show promising performance of DPC‐Net for liver and tumor segmentation from CT images. Furthermore, the proposed SemCor and SpaCor can effectively model the multilevel correlation from both semantic and spatial dimensions. The proposed attention modules are lightweight and can be easily extended to other multilevel methods in an end‐to‐end manner.</abstract><cop>United States</cop><pmid>35620834</pmid><doi>10.1002/mp.15723</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2022-11, Vol.49 (11), p.7207-7221
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2671274319
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects attention mechanism
computed tomography
liver segmentation
liver tumor segmentation
title Decoupled pyramid correlation network for liver tumor segmentation from CT images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupled%20pyramid%20correlation%20network%20for%20liver%20tumor%20segmentation%20from%20CT%20images&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Zhang,%20Yao&rft.date=2022-11&rft.volume=49&rft.issue=11&rft.spage=7207&rft.epage=7221&rft.pages=7207-7221&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.15723&rft_dat=%3Cproquest_cross%3E2671274319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671274319&rft_id=info:pmid/35620834&rfr_iscdi=true