Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States
Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-l...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2022-10, Vol.5 (10), p.4589-4598 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4598 |
---|---|
container_issue | 10 |
container_start_page | 4589 |
container_title | ACS applied bio materials |
container_volume | 5 |
creator | Braegelman, Adam S. Ollier, Rachel C. Su, Bo Addonizio, Christopher J. Zou, Lei Cole, Sara L. Webber, Matthew J. |
description | Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application. |
doi_str_mv | 10.1021/acsabm.2c00165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2671270857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671270857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-d906e32facfb54e1856801d13929838fe5d5157b8e913984804b2a88801302903</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoTuauHiVHETrfJEubHmV-TJiIdJ5L2qajo01q0hz235vR-XHx9H7wex54HoSuCMwJUHInSyeLbk5LABLzE3RBeRJH8YLS0z_7BM2c2wEABWBEpOdownhMGaTpBSpfZWlNZ1pV-lZanJnWDwpvrNSuN3bAjcaZ7638RVb7ypqtah3Oeql1o7f4Ya9l15R4MPjdS9dE2SCHcB-GcpforJatU7PjnKKPp8fNchWt355flvfrSLIEhqhKIVaM1rKsC75QRPBYAKkIS2kqmKgVrzjhSSFUGn5iIWBRUClEgBjQFNgU3Yy-vTWfXrkh7xpXqraVWhnvchonhCYgeBLQ-YiG8M5ZVee9bTpp9zmB_NBtPnabH7sNguujty86Vf3g300G4HYEgjDfGW91iPqf2xeDwYNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671270857</pqid></control><display><type>article</type><title>Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States</title><source>American Chemical Society Publications</source><creator>Braegelman, Adam S. ; Ollier, Rachel C. ; Su, Bo ; Addonizio, Christopher J. ; Zou, Lei ; Cole, Sara L. ; Webber, Matthew J.</creator><creatorcontrib>Braegelman, Adam S. ; Ollier, Rachel C. ; Su, Bo ; Addonizio, Christopher J. ; Zou, Lei ; Cole, Sara L. ; Webber, Matthew J.</creatorcontrib><description>Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.2c00165</identifier><identifier>PMID: 35623099</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied bio materials, 2022-10, Vol.5 (10), p.4589-4598</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-d906e32facfb54e1856801d13929838fe5d5157b8e913984804b2a88801302903</citedby><cites>FETCH-LOGICAL-a370t-d906e32facfb54e1856801d13929838fe5d5157b8e913984804b2a88801302903</cites><orcidid>0000-0003-3111-6228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.2c00165$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.2c00165$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35623099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braegelman, Adam S.</creatorcontrib><creatorcontrib>Ollier, Rachel C.</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Addonizio, Christopher J.</creatorcontrib><creatorcontrib>Zou, Lei</creatorcontrib><creatorcontrib>Cole, Sara L.</creatorcontrib><creatorcontrib>Webber, Matthew J.</creatorcontrib><title>Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application.</description><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoTuauHiVHETrfJEubHmV-TJiIdJ5L2qajo01q0hz235vR-XHx9H7wex54HoSuCMwJUHInSyeLbk5LABLzE3RBeRJH8YLS0z_7BM2c2wEABWBEpOdownhMGaTpBSpfZWlNZ1pV-lZanJnWDwpvrNSuN3bAjcaZ7638RVb7ypqtah3Oeql1o7f4Ya9l15R4MPjdS9dE2SCHcB-GcpforJatU7PjnKKPp8fNchWt355flvfrSLIEhqhKIVaM1rKsC75QRPBYAKkIS2kqmKgVrzjhSSFUGn5iIWBRUClEgBjQFNgU3Yy-vTWfXrkh7xpXqraVWhnvchonhCYgeBLQ-YiG8M5ZVee9bTpp9zmB_NBtPnabH7sNguujty86Vf3g300G4HYEgjDfGW91iPqf2xeDwYNQ</recordid><startdate>20221017</startdate><enddate>20221017</enddate><creator>Braegelman, Adam S.</creator><creator>Ollier, Rachel C.</creator><creator>Su, Bo</creator><creator>Addonizio, Christopher J.</creator><creator>Zou, Lei</creator><creator>Cole, Sara L.</creator><creator>Webber, Matthew J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3111-6228</orcidid></search><sort><creationdate>20221017</creationdate><title>Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States</title><author>Braegelman, Adam S. ; Ollier, Rachel C. ; Su, Bo ; Addonizio, Christopher J. ; Zou, Lei ; Cole, Sara L. ; Webber, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-d906e32facfb54e1856801d13929838fe5d5157b8e913984804b2a88801302903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braegelman, Adam S.</creatorcontrib><creatorcontrib>Ollier, Rachel C.</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Addonizio, Christopher J.</creatorcontrib><creatorcontrib>Zou, Lei</creatorcontrib><creatorcontrib>Cole, Sara L.</creatorcontrib><creatorcontrib>Webber, Matthew J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braegelman, Adam S.</au><au>Ollier, Rachel C.</au><au>Su, Bo</au><au>Addonizio, Christopher J.</au><au>Zou, Lei</au><au>Cole, Sara L.</au><au>Webber, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2022-10-17</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>4589</spage><epage>4598</epage><pages>4589-4598</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35623099</pmid><doi>10.1021/acsabm.2c00165</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3111-6228</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-6422 |
ispartof | ACS applied bio materials, 2022-10, Vol.5 (10), p.4589-4598 |
issn | 2576-6422 2576-6422 |
language | eng |
recordid | cdi_proquest_miscellaneous_2671270857 |
source | American Chemical Society Publications |
title | Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macromolecular%20Solute%20Transport%20in%20Supramolecular%20Hydrogels%20Spanning%20Dynamic%20to%20Quasi-Static%20States&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Braegelman,%20Adam%20S.&rft.date=2022-10-17&rft.volume=5&rft.issue=10&rft.spage=4589&rft.epage=4598&rft.pages=4589-4598&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.2c00165&rft_dat=%3Cproquest_cross%3E2671270857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671270857&rft_id=info:pmid/35623099&rfr_iscdi=true |