π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production
Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit s...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-06, Vol.14 (22), p.25278-25287 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25287 |
---|---|
container_issue | 22 |
container_start_page | 25278 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Xu, Linpeng Zhao, Yun Li, Zhanfeng Wu, Jianhong Cui, Jiewu Tian, Bining Wu, Yucheng Tian, Yue |
description | Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation. |
doi_str_mv | 10.1021/acsami.2c01781 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2671270579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671270579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMo3rcuJUsRps1lMpel1moLggXrekiTEx2ZmdQkA9ZV38EH8x18EkenunN1zoHv_-F8CJ1QMqCE0aFUXtblgClC04xuoX2ax3GUMcG2__Y43kMH3j8TknBGxC7a4yJhLI-zffT2sf5cv2s8rkAFZ5toZNtlBRrPLq-m8-FI3-MJBHDWB9eq0DrA40YuKvB4YqvueA1OqlDaBhvr8NiYUpXQBDx7ssEqGWS1CqXCk5V29hEaPHNWtz-BI7RjZOXheDMP0cP1eD6aRLd3N9PRxW0kOSchEkpIxVNOZCa0NoZxSjNp0lzknCgmVWpSIGDihGopGNXwjZKcQQw85wk_RGd979LZlxZ8KOrSK6gq2YBtfcGSlLKUiDTv0EGPqu5h78AUS1fW0q0KSopv30Xvu9j47gKnm-52UYP-w38Fd8B5D3TB4tm2rule_a_tC5scjWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671270579</pqid></control><display><type>article</type><title>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</title><source>ACS Publications</source><creator>Xu, Linpeng ; Zhao, Yun ; Li, Zhanfeng ; Wu, Jianhong ; Cui, Jiewu ; Tian, Bining ; Wu, Yucheng ; Tian, Yue</creator><creatorcontrib>Xu, Linpeng ; Zhao, Yun ; Li, Zhanfeng ; Wu, Jianhong ; Cui, Jiewu ; Tian, Bining ; Wu, Yucheng ; Tian, Yue</creatorcontrib><description>Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c01781</identifier><identifier>PMID: 35622948</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-06, Vol.14 (22), p.25278-25287</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</citedby><cites>FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</cites><orcidid>0000-0003-2754-8052 ; 0000-0002-8237-3622 ; 0000-0002-1549-0546 ; 0000-0002-1752-6514 ; 0000-0003-4613-4795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c01781$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c01781$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35622948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><title>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMo3rcuJUsRps1lMpel1moLggXrekiTEx2ZmdQkA9ZV38EH8x18EkenunN1zoHv_-F8CJ1QMqCE0aFUXtblgClC04xuoX2ax3GUMcG2__Y43kMH3j8TknBGxC7a4yJhLI-zffT2sf5cv2s8rkAFZ5toZNtlBRrPLq-m8-FI3-MJBHDWB9eq0DrA40YuKvB4YqvueA1OqlDaBhvr8NiYUpXQBDx7ssEqGWS1CqXCk5V29hEaPHNWtz-BI7RjZOXheDMP0cP1eD6aRLd3N9PRxW0kOSchEkpIxVNOZCa0NoZxSjNp0lzknCgmVWpSIGDihGopGNXwjZKcQQw85wk_RGd979LZlxZ8KOrSK6gq2YBtfcGSlLKUiDTv0EGPqu5h78AUS1fW0q0KSopv30Xvu9j47gKnm-52UYP-w38Fd8B5D3TB4tm2rule_a_tC5scjWs</recordid><startdate>20220608</startdate><enddate>20220608</enddate><creator>Xu, Linpeng</creator><creator>Zhao, Yun</creator><creator>Li, Zhanfeng</creator><creator>Wu, Jianhong</creator><creator>Cui, Jiewu</creator><creator>Tian, Bining</creator><creator>Wu, Yucheng</creator><creator>Tian, Yue</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2754-8052</orcidid><orcidid>https://orcid.org/0000-0002-8237-3622</orcidid><orcidid>https://orcid.org/0000-0002-1549-0546</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></search><sort><creationdate>20220608</creationdate><title>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</title><author>Xu, Linpeng ; Zhao, Yun ; Li, Zhanfeng ; Wu, Jianhong ; Cui, Jiewu ; Tian, Bining ; Wu, Yucheng ; Tian, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Linpeng</au><au>Zhao, Yun</au><au>Li, Zhanfeng</au><au>Wu, Jianhong</au><au>Cui, Jiewu</au><au>Tian, Bining</au><au>Wu, Yucheng</au><au>Tian, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-06-08</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>25278</spage><epage>25287</epage><pages>25278-25287</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35622948</pmid><doi>10.1021/acsami.2c01781</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2754-8052</orcidid><orcidid>https://orcid.org/0000-0002-8237-3622</orcidid><orcidid>https://orcid.org/0000-0002-1549-0546</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-06, Vol.14 (22), p.25278-25287 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2671270579 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CF%80%E2%80%93d%20Electron-Coupled%20PBDIT/CdS%20Heterostructure%20Enables%20Hole%20Extraction%20for%20Efficient%20Photocatalytic%20Hydrogen%20Production&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xu,%20Linpeng&rft.date=2022-06-08&rft.volume=14&rft.issue=22&rft.spage=25278&rft.epage=25287&rft.pages=25278-25287&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c01781&rft_dat=%3Cproquest_cross%3E2671270579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671270579&rft_id=info:pmid/35622948&rfr_iscdi=true |