π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production

Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-06, Vol.14 (22), p.25278-25287
Hauptverfasser: Xu, Linpeng, Zhao, Yun, Li, Zhanfeng, Wu, Jianhong, Cui, Jiewu, Tian, Bining, Wu, Yucheng, Tian, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25287
container_issue 22
container_start_page 25278
container_title ACS applied materials & interfaces
container_volume 14
creator Xu, Linpeng
Zhao, Yun
Li, Zhanfeng
Wu, Jianhong
Cui, Jiewu
Tian, Bining
Wu, Yucheng
Tian, Yue
description Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly­(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation.
doi_str_mv 10.1021/acsami.2c01781
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2671270579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671270579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMo3rcuJUsRps1lMpel1moLggXrekiTEx2ZmdQkA9ZV38EH8x18EkenunN1zoHv_-F8CJ1QMqCE0aFUXtblgClC04xuoX2ax3GUMcG2__Y43kMH3j8TknBGxC7a4yJhLI-zffT2sf5cv2s8rkAFZ5toZNtlBRrPLq-m8-FI3-MJBHDWB9eq0DrA40YuKvB4YqvueA1OqlDaBhvr8NiYUpXQBDx7ssEqGWS1CqXCk5V29hEaPHNWtz-BI7RjZOXheDMP0cP1eD6aRLd3N9PRxW0kOSchEkpIxVNOZCa0NoZxSjNp0lzknCgmVWpSIGDihGopGNXwjZKcQQw85wk_RGd979LZlxZ8KOrSK6gq2YBtfcGSlLKUiDTv0EGPqu5h78AUS1fW0q0KSopv30Xvu9j47gKnm-52UYP-w38Fd8B5D3TB4tm2rule_a_tC5scjWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671270579</pqid></control><display><type>article</type><title>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</title><source>ACS Publications</source><creator>Xu, Linpeng ; Zhao, Yun ; Li, Zhanfeng ; Wu, Jianhong ; Cui, Jiewu ; Tian, Bining ; Wu, Yucheng ; Tian, Yue</creator><creatorcontrib>Xu, Linpeng ; Zhao, Yun ; Li, Zhanfeng ; Wu, Jianhong ; Cui, Jiewu ; Tian, Bining ; Wu, Yucheng ; Tian, Yue</creatorcontrib><description>Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly­(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c01781</identifier><identifier>PMID: 35622948</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-06, Vol.14 (22), p.25278-25287</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</citedby><cites>FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</cites><orcidid>0000-0003-2754-8052 ; 0000-0002-8237-3622 ; 0000-0002-1549-0546 ; 0000-0002-1752-6514 ; 0000-0003-4613-4795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c01781$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c01781$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35622948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><title>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly­(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMo3rcuJUsRps1lMpel1moLggXrekiTEx2ZmdQkA9ZV38EH8x18EkenunN1zoHv_-F8CJ1QMqCE0aFUXtblgClC04xuoX2ax3GUMcG2__Y43kMH3j8TknBGxC7a4yJhLI-zffT2sf5cv2s8rkAFZ5toZNtlBRrPLq-m8-FI3-MJBHDWB9eq0DrA40YuKvB4YqvueA1OqlDaBhvr8NiYUpXQBDx7ssEqGWS1CqXCk5V29hEaPHNWtz-BI7RjZOXheDMP0cP1eD6aRLd3N9PRxW0kOSchEkpIxVNOZCa0NoZxSjNp0lzknCgmVWpSIGDihGopGNXwjZKcQQw85wk_RGd979LZlxZ8KOrSK6gq2YBtfcGSlLKUiDTv0EGPqu5h78AUS1fW0q0KSopv30Xvu9j47gKnm-52UYP-w38Fd8B5D3TB4tm2rule_a_tC5scjWs</recordid><startdate>20220608</startdate><enddate>20220608</enddate><creator>Xu, Linpeng</creator><creator>Zhao, Yun</creator><creator>Li, Zhanfeng</creator><creator>Wu, Jianhong</creator><creator>Cui, Jiewu</creator><creator>Tian, Bining</creator><creator>Wu, Yucheng</creator><creator>Tian, Yue</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2754-8052</orcidid><orcidid>https://orcid.org/0000-0002-8237-3622</orcidid><orcidid>https://orcid.org/0000-0002-1549-0546</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></search><sort><creationdate>20220608</creationdate><title>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</title><author>Xu, Linpeng ; Zhao, Yun ; Li, Zhanfeng ; Wu, Jianhong ; Cui, Jiewu ; Tian, Bining ; Wu, Yucheng ; Tian, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-5c5ac3730a85ddff23118af795930c2ac7f7e0ef461da521de30a8092e4e39363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Linpeng</au><au>Zhao, Yun</au><au>Li, Zhanfeng</au><au>Wu, Jianhong</au><au>Cui, Jiewu</au><au>Tian, Bining</au><au>Wu, Yucheng</au><au>Tian, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-06-08</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>25278</spage><epage>25287</epage><pages>25278-25287</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Construction of heterostructures is one of the most promising strategies for designing photocatalysts for highly efficient solar hydrogen (H2) production because the introduction of an electron-donating counterpart contributes to more effective photon absorption, while the heterostructures benefit spatial carrier separation. However, the hole-transfer rate is usually 2–3 orders of magnitude slower than that of the electron-transfer rate within the heterostructures, ensuing serious charge recombination. Here, we find the energy band offset-driven charge-transfer behavior in a donor–acceptor (D–A)-conjugated polymer/CdS organic/inorganic heterostructure and realize hole-transfer improvement in cooperation with a further hole removal motif of poly­(3,4-ethylenedioxythiophene) polystyrene sulfonate. The photocatalytic H2 production activity is increased by nearly 2 orders of magnitude with the apparent quantum yield hitting ca. 80% at 450 nm without co-catalysts. Ultrafast transient absorption together with surface photovoltage characterizations consolidates the hole extraction mechanism. The intimate bond formed at the interface between the polymer and the inorganic semiconductor acts as an interpenetrating network at the nanoscale level, thus providing a charge-transfer freeway for boosting charge separation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35622948</pmid><doi>10.1021/acsami.2c01781</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2754-8052</orcidid><orcidid>https://orcid.org/0000-0002-8237-3622</orcidid><orcidid>https://orcid.org/0000-0002-1549-0546</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-06, Vol.14 (22), p.25278-25287
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2671270579
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CF%80%E2%80%93d%20Electron-Coupled%20PBDIT/CdS%20Heterostructure%20Enables%20Hole%20Extraction%20for%20Efficient%20Photocatalytic%20Hydrogen%20Production&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xu,%20Linpeng&rft.date=2022-06-08&rft.volume=14&rft.issue=22&rft.spage=25278&rft.epage=25287&rft.pages=25278-25287&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c01781&rft_dat=%3Cproquest_cross%3E2671270579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671270579&rft_id=info:pmid/35622948&rfr_iscdi=true