Edge magnetization and thermally induced spin current in nanostructured graphene
In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the si...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2022-06, Vol.34 (31), p.315801 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 31 |
container_start_page | 315801 |
container_title | Journal of physics. Condensed matter |
container_volume | 34 |
creator | Phung, Thu Thi Nguyen, Mai Thi Pham, Lien Thi Ngo, Lan Thi Nguyen, Tung Thanh |
description | In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics. |
doi_str_mv | 10.1088/1361-648X/ac742a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2671270561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671270561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4Mobk7vnqQ3PViXX23So4z5AwZ6UPAW0iTdOtq0Julh_vVmdHoS4cGD9z7vC-8DwCWCdwhyPkckR2lO-cdcKkaxPALT39ExmMIiIykvOJ2AM--3EELKCT0FE5LlmBCST8HrUq9N0sq1NaH-kqHubCKtTsLGuFY2zS6prR6U0Ynva5uowTljQxwmVtrOBzeoMLi4XjvZb4w15-Ckko03F4c-A-8Py7fFU7p6eXxe3K9ShTkJKWOVJpoqzMoyl6xSGleIUYZRkeUIQyk1YhjrssKkLHXBSMa4gSWmua7iH2QGbsbc3nWfg_FBtLVXpmmkNd3gBc4ZwgzGsIjCEVWu896ZSvSubqXbCQTF3qPYSxN7aWL0GE-uDulD2Rr9e_AjLgK3I1B3vdh2g7Px2f_yrv_AVSsIFQTFyjhEotcV-QbIBoo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671270561</pqid></control><display><type>article</type><title>Edge magnetization and thermally induced spin current in nanostructured graphene</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Phung, Thu Thi ; Nguyen, Mai Thi ; Pham, Lien Thi ; Ngo, Lan Thi ; Nguyen, Tung Thanh</creator><creatorcontrib>Phung, Thu Thi ; Nguyen, Mai Thi ; Pham, Lien Thi ; Ngo, Lan Thi ; Nguyen, Tung Thanh</creatorcontrib><description>In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ac742a</identifier><identifier>PMID: 35623336</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>diamond graphene nano flakes ; graphene nanostructure ; Hubbard model ; magnetic state ; thermally induced spin current</subject><ispartof>Journal of physics. Condensed matter, 2022-06, Vol.34 (31), p.315801</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</citedby><cites>FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</cites><orcidid>0000-0003-0232-7261 ; 0000-0003-2991-8627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ac742a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35623336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phung, Thu Thi</creatorcontrib><creatorcontrib>Nguyen, Mai Thi</creatorcontrib><creatorcontrib>Pham, Lien Thi</creatorcontrib><creatorcontrib>Ngo, Lan Thi</creatorcontrib><creatorcontrib>Nguyen, Tung Thanh</creatorcontrib><title>Edge magnetization and thermally induced spin current in nanostructured graphene</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics.</description><subject>diamond graphene nano flakes</subject><subject>graphene nanostructure</subject><subject>Hubbard model</subject><subject>magnetic state</subject><subject>thermally induced spin current</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4Mobk7vnqQ3PViXX23So4z5AwZ6UPAW0iTdOtq0Julh_vVmdHoS4cGD9z7vC-8DwCWCdwhyPkckR2lO-cdcKkaxPALT39ExmMIiIykvOJ2AM--3EELKCT0FE5LlmBCST8HrUq9N0sq1NaH-kqHubCKtTsLGuFY2zS6prR6U0Ynva5uowTljQxwmVtrOBzeoMLi4XjvZb4w15-Ckko03F4c-A-8Py7fFU7p6eXxe3K9ShTkJKWOVJpoqzMoyl6xSGleIUYZRkeUIQyk1YhjrssKkLHXBSMa4gSWmua7iH2QGbsbc3nWfg_FBtLVXpmmkNd3gBc4ZwgzGsIjCEVWu896ZSvSubqXbCQTF3qPYSxN7aWL0GE-uDulD2Rr9e_AjLgK3I1B3vdh2g7Px2f_yrv_AVSsIFQTFyjhEotcV-QbIBoo1</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Phung, Thu Thi</creator><creator>Nguyen, Mai Thi</creator><creator>Pham, Lien Thi</creator><creator>Ngo, Lan Thi</creator><creator>Nguyen, Tung Thanh</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0232-7261</orcidid><orcidid>https://orcid.org/0000-0003-2991-8627</orcidid></search><sort><creationdate>20220610</creationdate><title>Edge magnetization and thermally induced spin current in nanostructured graphene</title><author>Phung, Thu Thi ; Nguyen, Mai Thi ; Pham, Lien Thi ; Ngo, Lan Thi ; Nguyen, Tung Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>diamond graphene nano flakes</topic><topic>graphene nanostructure</topic><topic>Hubbard model</topic><topic>magnetic state</topic><topic>thermally induced spin current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phung, Thu Thi</creatorcontrib><creatorcontrib>Nguyen, Mai Thi</creatorcontrib><creatorcontrib>Pham, Lien Thi</creatorcontrib><creatorcontrib>Ngo, Lan Thi</creatorcontrib><creatorcontrib>Nguyen, Tung Thanh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phung, Thu Thi</au><au>Nguyen, Mai Thi</au><au>Pham, Lien Thi</au><au>Ngo, Lan Thi</au><au>Nguyen, Tung Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge magnetization and thermally induced spin current in nanostructured graphene</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>34</volume><issue>31</issue><spage>315801</spage><pages>315801-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35623336</pmid><doi>10.1088/1361-648X/ac742a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0232-7261</orcidid><orcidid>https://orcid.org/0000-0003-2991-8627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2022-06, Vol.34 (31), p.315801 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_2671270561 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | diamond graphene nano flakes graphene nanostructure Hubbard model magnetic state thermally induced spin current |
title | Edge magnetization and thermally induced spin current in nanostructured graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20magnetization%20and%20thermally%20induced%20spin%20current%20in%20nanostructured%20graphene&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Phung,%20Thu%20Thi&rft.date=2022-06-10&rft.volume=34&rft.issue=31&rft.spage=315801&rft.pages=315801-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ac742a&rft_dat=%3Cproquest_cross%3E2671270561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671270561&rft_id=info:pmid/35623336&rfr_iscdi=true |