Edge magnetization and thermally induced spin current in nanostructured graphene

In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2022-06, Vol.34 (31), p.315801
Hauptverfasser: Phung, Thu Thi, Nguyen, Mai Thi, Pham, Lien Thi, Ngo, Lan Thi, Nguyen, Tung Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 31
container_start_page 315801
container_title Journal of physics. Condensed matter
container_volume 34
creator Phung, Thu Thi
Nguyen, Mai Thi
Pham, Lien Thi
Ngo, Lan Thi
Nguyen, Tung Thanh
description In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics.
doi_str_mv 10.1088/1361-648X/ac742a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2671270561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671270561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4Mobk7vnqQ3PViXX23So4z5AwZ6UPAW0iTdOtq0Julh_vVmdHoS4cGD9z7vC-8DwCWCdwhyPkckR2lO-cdcKkaxPALT39ExmMIiIykvOJ2AM--3EELKCT0FE5LlmBCST8HrUq9N0sq1NaH-kqHubCKtTsLGuFY2zS6prR6U0Ynva5uowTljQxwmVtrOBzeoMLi4XjvZb4w15-Ckko03F4c-A-8Py7fFU7p6eXxe3K9ShTkJKWOVJpoqzMoyl6xSGleIUYZRkeUIQyk1YhjrssKkLHXBSMa4gSWmua7iH2QGbsbc3nWfg_FBtLVXpmmkNd3gBc4ZwgzGsIjCEVWu896ZSvSubqXbCQTF3qPYSxN7aWL0GE-uDulD2Rr9e_AjLgK3I1B3vdh2g7Px2f_yrv_AVSsIFQTFyjhEotcV-QbIBoo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671270561</pqid></control><display><type>article</type><title>Edge magnetization and thermally induced spin current in nanostructured graphene</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Phung, Thu Thi ; Nguyen, Mai Thi ; Pham, Lien Thi ; Ngo, Lan Thi ; Nguyen, Tung Thanh</creator><creatorcontrib>Phung, Thu Thi ; Nguyen, Mai Thi ; Pham, Lien Thi ; Ngo, Lan Thi ; Nguyen, Tung Thanh</creatorcontrib><description>In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ac742a</identifier><identifier>PMID: 35623336</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>diamond graphene nano flakes ; graphene nanostructure ; Hubbard model ; magnetic state ; thermally induced spin current</subject><ispartof>Journal of physics. Condensed matter, 2022-06, Vol.34 (31), p.315801</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</citedby><cites>FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</cites><orcidid>0000-0003-0232-7261 ; 0000-0003-2991-8627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ac742a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35623336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phung, Thu Thi</creatorcontrib><creatorcontrib>Nguyen, Mai Thi</creatorcontrib><creatorcontrib>Pham, Lien Thi</creatorcontrib><creatorcontrib>Ngo, Lan Thi</creatorcontrib><creatorcontrib>Nguyen, Tung Thanh</creatorcontrib><title>Edge magnetization and thermally induced spin current in nanostructured graphene</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics.</description><subject>diamond graphene nano flakes</subject><subject>graphene nanostructure</subject><subject>Hubbard model</subject><subject>magnetic state</subject><subject>thermally induced spin current</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4Mobk7vnqQ3PViXX23So4z5AwZ6UPAW0iTdOtq0Julh_vVmdHoS4cGD9z7vC-8DwCWCdwhyPkckR2lO-cdcKkaxPALT39ExmMIiIykvOJ2AM--3EELKCT0FE5LlmBCST8HrUq9N0sq1NaH-kqHubCKtTsLGuFY2zS6prR6U0Ynva5uowTljQxwmVtrOBzeoMLi4XjvZb4w15-Ckko03F4c-A-8Py7fFU7p6eXxe3K9ShTkJKWOVJpoqzMoyl6xSGleIUYZRkeUIQyk1YhjrssKkLHXBSMa4gSWmua7iH2QGbsbc3nWfg_FBtLVXpmmkNd3gBc4ZwgzGsIjCEVWu896ZSvSubqXbCQTF3qPYSxN7aWL0GE-uDulD2Rr9e_AjLgK3I1B3vdh2g7Px2f_yrv_AVSsIFQTFyjhEotcV-QbIBoo1</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Phung, Thu Thi</creator><creator>Nguyen, Mai Thi</creator><creator>Pham, Lien Thi</creator><creator>Ngo, Lan Thi</creator><creator>Nguyen, Tung Thanh</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0232-7261</orcidid><orcidid>https://orcid.org/0000-0003-2991-8627</orcidid></search><sort><creationdate>20220610</creationdate><title>Edge magnetization and thermally induced spin current in nanostructured graphene</title><author>Phung, Thu Thi ; Nguyen, Mai Thi ; Pham, Lien Thi ; Ngo, Lan Thi ; Nguyen, Tung Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-77fd3d4c27bb6a7fcd2f174721956120aad1722dbf23bbd973578e0b246df0043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>diamond graphene nano flakes</topic><topic>graphene nanostructure</topic><topic>Hubbard model</topic><topic>magnetic state</topic><topic>thermally induced spin current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phung, Thu Thi</creatorcontrib><creatorcontrib>Nguyen, Mai Thi</creatorcontrib><creatorcontrib>Pham, Lien Thi</creatorcontrib><creatorcontrib>Ngo, Lan Thi</creatorcontrib><creatorcontrib>Nguyen, Tung Thanh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phung, Thu Thi</au><au>Nguyen, Mai Thi</au><au>Pham, Lien Thi</au><au>Ngo, Lan Thi</au><au>Nguyen, Tung Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge magnetization and thermally induced spin current in nanostructured graphene</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>34</volume><issue>31</issue><spage>315801</spage><pages>315801-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>In this work, the magnetic states and thermally induced spin currents in graphene nanoflake sizes with different sizes and shapes have been investigated using Hubbard model combined with non-equilibrium Green's function method. In addition to the antiferromagnetic (AFM) state governed by the sizes, shapes, armchair bond densities, and Coulomb energy, our calculations have also pointed out the emergence of ferromagnetic (FM) and complex magnetic states when the gate voltage is invoked in the graphene nanoflakes. More prominently, by exploiting the geometric symmetry of the nanoflakes without external fields, a pure spin current and zero charge current are generated in spin caloritronic device when the graphene nanoflakes are both in the AFM and FM states. The formation of pure spin currents driven by temperature difference depends on the graphene nanoflakes' size, shape, temperature and gate voltage as well. The study also shows the outstanding advantages of diamond-shaped graphene nanoflakes in both magnetic properties and spin currents. This result paves the way for the possibility of practical applications of graphene materials in spintronics and spin caloritronics.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35623336</pmid><doi>10.1088/1361-648X/ac742a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0232-7261</orcidid><orcidid>https://orcid.org/0000-0003-2991-8627</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2022-06, Vol.34 (31), p.315801
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_2671270561
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects diamond graphene nano flakes
graphene nanostructure
Hubbard model
magnetic state
thermally induced spin current
title Edge magnetization and thermally induced spin current in nanostructured graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20magnetization%20and%20thermally%20induced%20spin%20current%20in%20nanostructured%20graphene&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Phung,%20Thu%20Thi&rft.date=2022-06-10&rft.volume=34&rft.issue=31&rft.spage=315801&rft.pages=315801-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ac742a&rft_dat=%3Cproquest_cross%3E2671270561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671270561&rft_id=info:pmid/35623336&rfr_iscdi=true