Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels

Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-07, Vol.34 (30), p.e2202943-n/a
Hauptverfasser: Han, Guanghui, Li, Menggang, Liu, Hu, Zhang, Weiyu, He, Lin, Tian, Fenyang, Liu, Yequn, Yu, Yongsheng, Yang, Weiwei, Guo, Shaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e2202943
container_title Advanced materials (Weinheim)
container_volume 34
creator Han, Guanghui
Li, Menggang
Liu, Hu
Zhang, Weiyu
He, Lin
Tian, Fenyang
Liu, Yequn
Yu, Yongsheng
Yang, Weiwei
Guo, Shaojun
description Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers. A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode.
doi_str_mv 10.1002/adma.202202943
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2670063363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694783172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqtXj7LgxcvWJJPNNsdi6wdUBKvnJd2d6Ep2U5Mu0ps_wd_oLzGlfoAXYZiB4ZmH4SXkiNEBo5Sf6arRA055LCVgi_RYxlkqqMq2SY8qyFIlxXCP7IfwTClVkspdsgeZZCDyvEfuZ0_OLz_e3u90-4jJuDamC7Vrk0mr5xZDcoktem2T2apdPmGoQ-JMcoNV3TXxatIuvVuskpG1Lnb07hFtOCA7RtuAh1-zTx4uJvfnV-n09vL6fDRNS8gBUp6ZTBmADDIjK8GG1dyUhgtuqIC4RlZVpTSVoTA0XMs5xZILBTrCZQShT0433oV3Lx2GZdHUoURrdYuuCwWXOaUSIFafnPxBn13n2_hdpJTIh8DytXCwoUrvQvBoioWvG-1XBaPFOu9inXfxk3c8OP7SdvMGqx_8O-AIqA3wWltc_aMrRuOb0a_8EwsYjaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694783172</pqid></control><display><type>article</type><title>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Han, Guanghui ; Li, Menggang ; Liu, Hu ; Zhang, Weiyu ; He, Lin ; Tian, Fenyang ; Liu, Yequn ; Yu, Yongsheng ; Yang, Weiwei ; Guo, Shaojun</creator><creatorcontrib>Han, Guanghui ; Li, Menggang ; Liu, Hu ; Zhang, Weiyu ; He, Lin ; Tian, Fenyang ; Liu, Yequn ; Yu, Yongsheng ; Yang, Weiwei ; Guo, Shaojun</creatorcontrib><description>Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers. A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202202943</identifier><identifier>PMID: 35613477</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Alloys ; Catalysis ; Chemical synthesis ; Diffusion ; Fourier transforms ; Materials science ; Medium entropy alloys ; Methanol ; methanol oxidation reaction ; NMR ; Nuclear magnetic resonance ; Oxidation ; short‐range diffusion</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (30), p.e2202943-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</citedby><cites>FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</cites><orcidid>0000-0003-4427-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202202943$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202202943$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35613477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Guanghui</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Weiyu</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Tian, Fenyang</creatorcontrib><creatorcontrib>Liu, Yequn</creatorcontrib><creatorcontrib>Yu, Yongsheng</creatorcontrib><creatorcontrib>Yang, Weiwei</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><title>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers. A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode.</description><subject>Aerogels</subject><subject>Alloys</subject><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Diffusion</subject><subject>Fourier transforms</subject><subject>Materials science</subject><subject>Medium entropy alloys</subject><subject>Methanol</subject><subject>methanol oxidation reaction</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>short‐range diffusion</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWqtXj7LgxcvWJJPNNsdi6wdUBKvnJd2d6Ep2U5Mu0ps_wd_oLzGlfoAXYZiB4ZmH4SXkiNEBo5Sf6arRA055LCVgi_RYxlkqqMq2SY8qyFIlxXCP7IfwTClVkspdsgeZZCDyvEfuZ0_OLz_e3u90-4jJuDamC7Vrk0mr5xZDcoktem2T2apdPmGoQ-JMcoNV3TXxatIuvVuskpG1Lnb07hFtOCA7RtuAh1-zTx4uJvfnV-n09vL6fDRNS8gBUp6ZTBmADDIjK8GG1dyUhgtuqIC4RlZVpTSVoTA0XMs5xZILBTrCZQShT0433oV3Lx2GZdHUoURrdYuuCwWXOaUSIFafnPxBn13n2_hdpJTIh8DytXCwoUrvQvBoioWvG-1XBaPFOu9inXfxk3c8OP7SdvMGqx_8O-AIqA3wWltc_aMrRuOb0a_8EwsYjaw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Han, Guanghui</creator><creator>Li, Menggang</creator><creator>Liu, Hu</creator><creator>Zhang, Weiyu</creator><creator>He, Lin</creator><creator>Tian, Fenyang</creator><creator>Liu, Yequn</creator><creator>Yu, Yongsheng</creator><creator>Yang, Weiwei</creator><creator>Guo, Shaojun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></search><sort><creationdate>20220701</creationdate><title>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</title><author>Han, Guanghui ; Li, Menggang ; Liu, Hu ; Zhang, Weiyu ; He, Lin ; Tian, Fenyang ; Liu, Yequn ; Yu, Yongsheng ; Yang, Weiwei ; Guo, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerogels</topic><topic>Alloys</topic><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Diffusion</topic><topic>Fourier transforms</topic><topic>Materials science</topic><topic>Medium entropy alloys</topic><topic>Methanol</topic><topic>methanol oxidation reaction</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>short‐range diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Guanghui</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Weiyu</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Tian, Fenyang</creatorcontrib><creatorcontrib>Liu, Yequn</creatorcontrib><creatorcontrib>Yu, Yongsheng</creatorcontrib><creatorcontrib>Yang, Weiwei</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Guanghui</au><au>Li, Menggang</au><au>Liu, Hu</au><au>Zhang, Weiyu</au><au>He, Lin</au><au>Tian, Fenyang</au><au>Liu, Yequn</au><au>Yu, Yongsheng</au><au>Yang, Weiwei</au><au>Guo, Shaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>30</issue><spage>e2202943</spage><epage>n/a</epage><pages>e2202943-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers. A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35613477</pmid><doi>10.1002/adma.202202943</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-07, Vol.34 (30), p.e2202943-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2670063363
source Wiley Online Library Journals Frontfile Complete
subjects Aerogels
Alloys
Catalysis
Chemical synthesis
Diffusion
Fourier transforms
Materials science
Medium entropy alloys
Methanol
methanol oxidation reaction
NMR
Nuclear magnetic resonance
Oxidation
short‐range diffusion
title Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%E2%80%90Range%20Diffusion%20Enables%20General%20Synthesis%20of%20Medium%E2%80%90Entropy%20Alloy%20Aerogels&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Han,%20Guanghui&rft.date=2022-07-01&rft.volume=34&rft.issue=30&rft.spage=e2202943&rft.epage=n/a&rft.pages=e2202943-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202202943&rft_dat=%3Cproquest_cross%3E2694783172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694783172&rft_id=info:pmid/35613477&rfr_iscdi=true