Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels
Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strat...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-07, Vol.34 (30), p.e2202943-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | e2202943 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Han, Guanghui Li, Menggang Liu, Hu Zhang, Weiyu He, Lin Tian, Fenyang Liu, Yequn Yu, Yongsheng Yang, Weiwei Guo, Shaojun |
description | Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers.
A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode. |
doi_str_mv | 10.1002/adma.202202943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2670063363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694783172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqtXj7LgxcvWJJPNNsdi6wdUBKvnJd2d6Ep2U5Mu0ps_wd_oLzGlfoAXYZiB4ZmH4SXkiNEBo5Sf6arRA055LCVgi_RYxlkqqMq2SY8qyFIlxXCP7IfwTClVkspdsgeZZCDyvEfuZ0_OLz_e3u90-4jJuDamC7Vrk0mr5xZDcoktem2T2apdPmGoQ-JMcoNV3TXxatIuvVuskpG1Lnb07hFtOCA7RtuAh1-zTx4uJvfnV-n09vL6fDRNS8gBUp6ZTBmADDIjK8GG1dyUhgtuqIC4RlZVpTSVoTA0XMs5xZILBTrCZQShT0433oV3Lx2GZdHUoURrdYuuCwWXOaUSIFafnPxBn13n2_hdpJTIh8DytXCwoUrvQvBoioWvG-1XBaPFOu9inXfxk3c8OP7SdvMGqx_8O-AIqA3wWltc_aMrRuOb0a_8EwsYjaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694783172</pqid></control><display><type>article</type><title>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Han, Guanghui ; Li, Menggang ; Liu, Hu ; Zhang, Weiyu ; He, Lin ; Tian, Fenyang ; Liu, Yequn ; Yu, Yongsheng ; Yang, Weiwei ; Guo, Shaojun</creator><creatorcontrib>Han, Guanghui ; Li, Menggang ; Liu, Hu ; Zhang, Weiyu ; He, Lin ; Tian, Fenyang ; Liu, Yequn ; Yu, Yongsheng ; Yang, Weiwei ; Guo, Shaojun</creatorcontrib><description>Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers.
A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202202943</identifier><identifier>PMID: 35613477</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Alloys ; Catalysis ; Chemical synthesis ; Diffusion ; Fourier transforms ; Materials science ; Medium entropy alloys ; Methanol ; methanol oxidation reaction ; NMR ; Nuclear magnetic resonance ; Oxidation ; short‐range diffusion</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (30), p.e2202943-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</citedby><cites>FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</cites><orcidid>0000-0003-4427-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202202943$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202202943$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35613477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Guanghui</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Weiyu</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Tian, Fenyang</creatorcontrib><creatorcontrib>Liu, Yequn</creatorcontrib><creatorcontrib>Yu, Yongsheng</creatorcontrib><creatorcontrib>Yang, Weiwei</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><title>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers.
A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode.</description><subject>Aerogels</subject><subject>Alloys</subject><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Diffusion</subject><subject>Fourier transforms</subject><subject>Materials science</subject><subject>Medium entropy alloys</subject><subject>Methanol</subject><subject>methanol oxidation reaction</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>short‐range diffusion</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWqtXj7LgxcvWJJPNNsdi6wdUBKvnJd2d6Ep2U5Mu0ps_wd_oLzGlfoAXYZiB4ZmH4SXkiNEBo5Sf6arRA055LCVgi_RYxlkqqMq2SY8qyFIlxXCP7IfwTClVkspdsgeZZCDyvEfuZ0_OLz_e3u90-4jJuDamC7Vrk0mr5xZDcoktem2T2apdPmGoQ-JMcoNV3TXxatIuvVuskpG1Lnb07hFtOCA7RtuAh1-zTx4uJvfnV-n09vL6fDRNS8gBUp6ZTBmADDIjK8GG1dyUhgtuqIC4RlZVpTSVoTA0XMs5xZILBTrCZQShT0433oV3Lx2GZdHUoURrdYuuCwWXOaUSIFafnPxBn13n2_hdpJTIh8DytXCwoUrvQvBoioWvG-1XBaPFOu9inXfxk3c8OP7SdvMGqx_8O-AIqA3wWltc_aMrRuOb0a_8EwsYjaw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Han, Guanghui</creator><creator>Li, Menggang</creator><creator>Liu, Hu</creator><creator>Zhang, Weiyu</creator><creator>He, Lin</creator><creator>Tian, Fenyang</creator><creator>Liu, Yequn</creator><creator>Yu, Yongsheng</creator><creator>Yang, Weiwei</creator><creator>Guo, Shaojun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></search><sort><creationdate>20220701</creationdate><title>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</title><author>Han, Guanghui ; Li, Menggang ; Liu, Hu ; Zhang, Weiyu ; He, Lin ; Tian, Fenyang ; Liu, Yequn ; Yu, Yongsheng ; Yang, Weiwei ; Guo, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-25f59f33535f6d418dbfcf242f043335e1ddc6fdf038f2a6b0ec2493a6d4ccf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerogels</topic><topic>Alloys</topic><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Diffusion</topic><topic>Fourier transforms</topic><topic>Materials science</topic><topic>Medium entropy alloys</topic><topic>Methanol</topic><topic>methanol oxidation reaction</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>short‐range diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Guanghui</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Weiyu</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Tian, Fenyang</creatorcontrib><creatorcontrib>Liu, Yequn</creatorcontrib><creatorcontrib>Yu, Yongsheng</creatorcontrib><creatorcontrib>Yang, Weiwei</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Guanghui</au><au>Li, Menggang</au><au>Liu, Hu</au><au>Zhang, Weiyu</au><au>He, Lin</au><au>Tian, Fenyang</au><au>Liu, Yequn</au><au>Yu, Yongsheng</au><au>Yang, Weiwei</au><au>Guo, Shaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>30</issue><spage>e2202943</spage><epage>n/a</epage><pages>e2202943-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Medium‐entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single‐phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm−3 among the metal materials is reported, through combining auto‐combustion and subsequent low‐temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short‐range diffusion of metal atoms possible to drive the formation of single‐phase MEAAs. As a proof of concept in catalysis, as‐synthesized Ni50Co15Fe30Cu5 MEAAs exhibit a high mass activity of 1.62 A mg−1 and specific activity of 132.24 mA cm−2 toward methanol oxidation reactions, much higher than those of the low‐entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol‐oxidation‐assisted MEAAs‐based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm−2 for making value‐added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers.
A general short‐range diffusion driving strategy for preparing ultralight 3D porous medium entropy aerogels (MEAAs) is proposed to achieve highly efficient methanol oxidation electrocatalysis. The well‐designed MEAAs can be used for a methanol‐oxidation‐assisted water electrolyzer with a low cell voltage of 1.476 V, not only greatly reducing the overpotential of the traditional alkaline water electrolyzer, but also obtaining value‐added formate products at anode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35613477</pmid><doi>10.1002/adma.202202943</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-07, Vol.34 (30), p.e2202943-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2670063363 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aerogels Alloys Catalysis Chemical synthesis Diffusion Fourier transforms Materials science Medium entropy alloys Methanol methanol oxidation reaction NMR Nuclear magnetic resonance Oxidation short‐range diffusion |
title | Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%E2%80%90Range%20Diffusion%20Enables%20General%20Synthesis%20of%20Medium%E2%80%90Entropy%20Alloy%20Aerogels&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Han,%20Guanghui&rft.date=2022-07-01&rft.volume=34&rft.issue=30&rft.spage=e2202943&rft.epage=n/a&rft.pages=e2202943-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202202943&rft_dat=%3Cproquest_cross%3E2694783172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694783172&rft_id=info:pmid/35613477&rfr_iscdi=true |