An Interlayer Containing Dissociated LiNO3 with Fast Release Speed for Stable Lithium Metal Batteries with 400 Wh kg−1 Energy Density

Lithium metal is an ideal electrode material for future rechargeable batteries. However, dendrite formation and unstable solid electrolyte interphase film lead to safety concerns and poor Coulombic efficiency (CE). LiNO3 significantly improves the performance of the lithium metal anode in ester elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-06, Vol.18 (25), p.e2202349-n/a
Hauptverfasser: Yang, Huicong, Liu, Qingyun, Wang, Yaozu, Ma, Zhuoting, Tang, Pei, Zhang, Xiaoyin, Cheng, Hui‐Ming, Sun, Zhenhua, Li, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page e2202349
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Yang, Huicong
Liu, Qingyun
Wang, Yaozu
Ma, Zhuoting
Tang, Pei
Zhang, Xiaoyin
Cheng, Hui‐Ming
Sun, Zhenhua
Li, Feng
description Lithium metal is an ideal electrode material for future rechargeable batteries. However, dendrite formation and unstable solid electrolyte interphase film lead to safety concerns and poor Coulombic efficiency (CE). LiNO3 significantly improves the performance of the lithium metal anode in ester electrolytes but its use is restricted by low solubility. To increase the content of LiNO3 in the cell, a poly‐(vinyl carbonate) organogel interlayer containing dissociated LiNO3 (LNO‐PVC) is placed between the cathode and anode. The dissociated LiNO3 effectively increases the LiNO3‐release rate and compensates for the LiNO3 consumed in ester electrolytes during cycling. Via this interlayer, the performance of the lithium metal anode is significantly improved. The average CE of a Li‐Cu cell reaches 98.6% at 0.5 mA cm−2‐1 h and 98.5% at 1 mA cm−2‐1 h for 300 cycles. Also, a Li||NCM811 pouch cell with LNO‐PVC interlayer can also reach a 400 Wh kg−1 energy density with a cycling life of 65 cycles. This strategy sheds light on the effect of the state of this salt on its release/dissolution kinetics, which is determined by the interactions between the salt and host material. By using PVC as a host material, LiNO3 can exist in a dissociated state inside PVC rather than in a crystalline state. The dissociated LiNO3 has a lower activation energy for the dissolution/release process and realizes a fast release speed to ensure its efficient reduction on the lithium metal anode side to improve the battery performance.
doi_str_mv 10.1002/smll.202202349
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2670061382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670061382</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1969-dea9d13f6fdf9ccb3a421efcd9277cffa9289b247fb34dad52ccf9b1be45ab8e3</originalsourceid><addsrcrecordid>eNpdkc1OwkAQxxujiYhePW_ixQu4H6WwR-RDSYokovHYbNtZWFy2tbuE9A04-wQ-i4_ik7gEw8FkkpnJ_GYyM_8guCa4TTCmd3atdZti6o2F_CRokIiwVtSj_PQYE3weXFi7wpgRGnYbwa5v0MQ4qLSooUKDwjihjDILNFTWFpkSDnIUq6cZQ1vllmgsrEPPoEFYQPMSfFUWFZo7kWrwoFuqzRpNwQmN7oXzkxXYQ2uI8ffX2xK9L352nwSNDFSLGg3BWOXqy-BMCm3h6s83g9fx6GXw2IpnD5NBP26VhEe8lYPgOWEykrnkWZYyEVICMss57XYzKQWnPZ7602TKwlzkHZplkqckhbAj0h6wZnB7mFtWxccGrEvWymagtTBQbGxCoy7G_lk96tGbf-iq2FTGb7eneIdEIY08xQ_UVmmok7JSa1HVCcHJXpVkr0pyVCWZT-P4mLFfGwKGRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679516426</pqid></control><display><type>article</type><title>An Interlayer Containing Dissociated LiNO3 with Fast Release Speed for Stable Lithium Metal Batteries with 400 Wh kg−1 Energy Density</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Huicong ; Liu, Qingyun ; Wang, Yaozu ; Ma, Zhuoting ; Tang, Pei ; Zhang, Xiaoyin ; Cheng, Hui‐Ming ; Sun, Zhenhua ; Li, Feng</creator><creatorcontrib>Yang, Huicong ; Liu, Qingyun ; Wang, Yaozu ; Ma, Zhuoting ; Tang, Pei ; Zhang, Xiaoyin ; Cheng, Hui‐Ming ; Sun, Zhenhua ; Li, Feng</creatorcontrib><description>Lithium metal is an ideal electrode material for future rechargeable batteries. However, dendrite formation and unstable solid electrolyte interphase film lead to safety concerns and poor Coulombic efficiency (CE). LiNO3 significantly improves the performance of the lithium metal anode in ester electrolytes but its use is restricted by low solubility. To increase the content of LiNO3 in the cell, a poly‐(vinyl carbonate) organogel interlayer containing dissociated LiNO3 (LNO‐PVC) is placed between the cathode and anode. The dissociated LiNO3 effectively increases the LiNO3‐release rate and compensates for the LiNO3 consumed in ester electrolytes during cycling. Via this interlayer, the performance of the lithium metal anode is significantly improved. The average CE of a Li‐Cu cell reaches 98.6% at 0.5 mA cm−2‐1 h and 98.5% at 1 mA cm−2‐1 h for 300 cycles. Also, a Li||NCM811 pouch cell with LNO‐PVC interlayer can also reach a 400 Wh kg−1 energy density with a cycling life of 65 cycles. This strategy sheds light on the effect of the state of this salt on its release/dissolution kinetics, which is determined by the interactions between the salt and host material. By using PVC as a host material, LiNO3 can exist in a dissociated state inside PVC rather than in a crystalline state. The dissociated LiNO3 has a lower activation energy for the dissolution/release process and realizes a fast release speed to ensure its efficient reduction on the lithium metal anode side to improve the battery performance.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202202349</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; carbonate electrolyte ; Cycles ; Dendritic structure ; dissociated state of LiNO 3 ; Electrode materials ; Electrolytes ; fast release rate ; interlayer ; Interlayers ; Lithium ; Lithium batteries ; lithium metal anode ; Nanotechnology ; Performance enhancement ; Polyvinyl chloride ; Rechargeable batteries ; Solid electrolytes</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (25), p.e2202349-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2213-9914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202202349$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202202349$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Huicong</creatorcontrib><creatorcontrib>Liu, Qingyun</creatorcontrib><creatorcontrib>Wang, Yaozu</creatorcontrib><creatorcontrib>Ma, Zhuoting</creatorcontrib><creatorcontrib>Tang, Pei</creatorcontrib><creatorcontrib>Zhang, Xiaoyin</creatorcontrib><creatorcontrib>Cheng, Hui‐Ming</creatorcontrib><creatorcontrib>Sun, Zhenhua</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><title>An Interlayer Containing Dissociated LiNO3 with Fast Release Speed for Stable Lithium Metal Batteries with 400 Wh kg−1 Energy Density</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Lithium metal is an ideal electrode material for future rechargeable batteries. However, dendrite formation and unstable solid electrolyte interphase film lead to safety concerns and poor Coulombic efficiency (CE). LiNO3 significantly improves the performance of the lithium metal anode in ester electrolytes but its use is restricted by low solubility. To increase the content of LiNO3 in the cell, a poly‐(vinyl carbonate) organogel interlayer containing dissociated LiNO3 (LNO‐PVC) is placed between the cathode and anode. The dissociated LiNO3 effectively increases the LiNO3‐release rate and compensates for the LiNO3 consumed in ester electrolytes during cycling. Via this interlayer, the performance of the lithium metal anode is significantly improved. The average CE of a Li‐Cu cell reaches 98.6% at 0.5 mA cm−2‐1 h and 98.5% at 1 mA cm−2‐1 h for 300 cycles. Also, a Li||NCM811 pouch cell with LNO‐PVC interlayer can also reach a 400 Wh kg−1 energy density with a cycling life of 65 cycles. This strategy sheds light on the effect of the state of this salt on its release/dissolution kinetics, which is determined by the interactions between the salt and host material. By using PVC as a host material, LiNO3 can exist in a dissociated state inside PVC rather than in a crystalline state. The dissociated LiNO3 has a lower activation energy for the dissolution/release process and realizes a fast release speed to ensure its efficient reduction on the lithium metal anode side to improve the battery performance.</description><subject>Batteries</subject><subject>carbonate electrolyte</subject><subject>Cycles</subject><subject>Dendritic structure</subject><subject>dissociated state of LiNO 3</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>fast release rate</subject><subject>interlayer</subject><subject>Interlayers</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal anode</subject><subject>Nanotechnology</subject><subject>Performance enhancement</subject><subject>Polyvinyl chloride</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1OwkAQxxujiYhePW_ixQu4H6WwR-RDSYokovHYbNtZWFy2tbuE9A04-wQ-i4_ik7gEw8FkkpnJ_GYyM_8guCa4TTCmd3atdZti6o2F_CRokIiwVtSj_PQYE3weXFi7wpgRGnYbwa5v0MQ4qLSooUKDwjihjDILNFTWFpkSDnIUq6cZQ1vllmgsrEPPoEFYQPMSfFUWFZo7kWrwoFuqzRpNwQmN7oXzkxXYQ2uI8ffX2xK9L352nwSNDFSLGg3BWOXqy-BMCm3h6s83g9fx6GXw2IpnD5NBP26VhEe8lYPgOWEykrnkWZYyEVICMss57XYzKQWnPZ7602TKwlzkHZplkqckhbAj0h6wZnB7mFtWxccGrEvWymagtTBQbGxCoy7G_lk96tGbf-iq2FTGb7eneIdEIY08xQ_UVmmok7JSa1HVCcHJXpVkr0pyVCWZT-P4mLFfGwKGRA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yang, Huicong</creator><creator>Liu, Qingyun</creator><creator>Wang, Yaozu</creator><creator>Ma, Zhuoting</creator><creator>Tang, Pei</creator><creator>Zhang, Xiaoyin</creator><creator>Cheng, Hui‐Ming</creator><creator>Sun, Zhenhua</creator><creator>Li, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2213-9914</orcidid></search><sort><creationdate>20220601</creationdate><title>An Interlayer Containing Dissociated LiNO3 with Fast Release Speed for Stable Lithium Metal Batteries with 400 Wh kg−1 Energy Density</title><author>Yang, Huicong ; Liu, Qingyun ; Wang, Yaozu ; Ma, Zhuoting ; Tang, Pei ; Zhang, Xiaoyin ; Cheng, Hui‐Ming ; Sun, Zhenhua ; Li, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1969-dea9d13f6fdf9ccb3a421efcd9277cffa9289b247fb34dad52ccf9b1be45ab8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>carbonate electrolyte</topic><topic>Cycles</topic><topic>Dendritic structure</topic><topic>dissociated state of LiNO 3</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>fast release rate</topic><topic>interlayer</topic><topic>Interlayers</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal anode</topic><topic>Nanotechnology</topic><topic>Performance enhancement</topic><topic>Polyvinyl chloride</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huicong</creatorcontrib><creatorcontrib>Liu, Qingyun</creatorcontrib><creatorcontrib>Wang, Yaozu</creatorcontrib><creatorcontrib>Ma, Zhuoting</creatorcontrib><creatorcontrib>Tang, Pei</creatorcontrib><creatorcontrib>Zhang, Xiaoyin</creatorcontrib><creatorcontrib>Cheng, Hui‐Ming</creatorcontrib><creatorcontrib>Sun, Zhenhua</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huicong</au><au>Liu, Qingyun</au><au>Wang, Yaozu</au><au>Ma, Zhuoting</au><au>Tang, Pei</au><au>Zhang, Xiaoyin</au><au>Cheng, Hui‐Ming</au><au>Sun, Zhenhua</au><au>Li, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interlayer Containing Dissociated LiNO3 with Fast Release Speed for Stable Lithium Metal Batteries with 400 Wh kg−1 Energy Density</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>25</issue><spage>e2202349</spage><epage>n/a</epage><pages>e2202349-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Lithium metal is an ideal electrode material for future rechargeable batteries. However, dendrite formation and unstable solid electrolyte interphase film lead to safety concerns and poor Coulombic efficiency (CE). LiNO3 significantly improves the performance of the lithium metal anode in ester electrolytes but its use is restricted by low solubility. To increase the content of LiNO3 in the cell, a poly‐(vinyl carbonate) organogel interlayer containing dissociated LiNO3 (LNO‐PVC) is placed between the cathode and anode. The dissociated LiNO3 effectively increases the LiNO3‐release rate and compensates for the LiNO3 consumed in ester electrolytes during cycling. Via this interlayer, the performance of the lithium metal anode is significantly improved. The average CE of a Li‐Cu cell reaches 98.6% at 0.5 mA cm−2‐1 h and 98.5% at 1 mA cm−2‐1 h for 300 cycles. Also, a Li||NCM811 pouch cell with LNO‐PVC interlayer can also reach a 400 Wh kg−1 energy density with a cycling life of 65 cycles. This strategy sheds light on the effect of the state of this salt on its release/dissolution kinetics, which is determined by the interactions between the salt and host material. By using PVC as a host material, LiNO3 can exist in a dissociated state inside PVC rather than in a crystalline state. The dissociated LiNO3 has a lower activation energy for the dissolution/release process and realizes a fast release speed to ensure its efficient reduction on the lithium metal anode side to improve the battery performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202202349</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2213-9914</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (25), p.e2202349-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2670061382
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
carbonate electrolyte
Cycles
Dendritic structure
dissociated state of LiNO 3
Electrode materials
Electrolytes
fast release rate
interlayer
Interlayers
Lithium
Lithium batteries
lithium metal anode
Nanotechnology
Performance enhancement
Polyvinyl chloride
Rechargeable batteries
Solid electrolytes
title An Interlayer Containing Dissociated LiNO3 with Fast Release Speed for Stable Lithium Metal Batteries with 400 Wh kg−1 Energy Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interlayer%20Containing%20Dissociated%20LiNO3%20with%20Fast%20Release%20Speed%20for%20Stable%20Lithium%20Metal%20Batteries%20with%20400%C2%A0Wh%20kg%E2%88%921%20Energy%20Density&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yang,%20Huicong&rft.date=2022-06-01&rft.volume=18&rft.issue=25&rft.spage=e2202349&rft.epage=n/a&rft.pages=e2202349-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202202349&rft_dat=%3Cproquest_wiley%3E2670061382%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679516426&rft_id=info:pmid/&rfr_iscdi=true