Interior point method and indefinite sparse solver for linear programming problems

In 1984, N. Karmarkar at AT&T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in engineering software (1992) 1998-04, Vol.29 (3), p.409-414
Hauptverfasser: Runesha, H., Nguyen, D.T., Belegundu, A.D., Chandrupatla, T.R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 3
container_start_page 409
container_title Advances in engineering software (1992)
container_volume 29
creator Runesha, H.
Nguyen, D.T.
Belegundu, A.D.
Chandrupatla, T.R.
description In 1984, N. Karmarkar at AT&T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM.
doi_str_mv 10.1016/S0965-9978(97)00073-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26691969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0965997897000732</els_id><sourcerecordid>26691969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-45c08474f19e73436465e9212599eaa640a130a23873d0fe3e16f0bf2de1eb583</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhbNQsD5-gjAr0cXoTTKTTFYixUehIPhYh3RyUyMzSU2mBf-901bcujqXyznncj9CzilcU6Di5hWUqEulZHOp5BUASF6yAzL5Wx-R45w_AWgFjE7IyywMmHxMxSr6MBQ9Dh_RFibYwgeLzgc_YJFXJuVRYrfBVLjR3fmAZgyluEym731YbudFh30-JYfOdBnPfvWEvD_cv02fyvnz42x6Ny9b1oihrOoWmkpWjiqUvOKiEjUqRlmtFBojKjCUg2G8kdyCQ45UOFg4ZpHiom74CbnY946Hv9aYB9373GLXmYBxnTUTQlEl1Gis98Y2xZwTOr1KvjfpW1PQW2p6R01v8Wgl9Y6aZmPudp_D8YuNx6Rz6zG0aH3CdtA2-n8afgAAVHcl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26691969</pqid></control><display><type>article</type><title>Interior point method and indefinite sparse solver for linear programming problems</title><source>Elsevier ScienceDirect Journals</source><creator>Runesha, H. ; Nguyen, D.T. ; Belegundu, A.D. ; Chandrupatla, T.R.</creator><creatorcontrib>Runesha, H. ; Nguyen, D.T. ; Belegundu, A.D. ; Chandrupatla, T.R.</creatorcontrib><description>In 1984, N. Karmarkar at AT&amp;T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM.</description><identifier>ISSN: 0965-9978</identifier><identifier>DOI: 10.1016/S0965-9978(97)00073-2</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Advances in engineering software (1992), 1998-04, Vol.29 (3), p.409-414</ispartof><rights>1998 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-45c08474f19e73436465e9212599eaa640a130a23873d0fe3e16f0bf2de1eb583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0965997897000732$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Runesha, H.</creatorcontrib><creatorcontrib>Nguyen, D.T.</creatorcontrib><creatorcontrib>Belegundu, A.D.</creatorcontrib><creatorcontrib>Chandrupatla, T.R.</creatorcontrib><title>Interior point method and indefinite sparse solver for linear programming problems</title><title>Advances in engineering software (1992)</title><description>In 1984, N. Karmarkar at AT&amp;T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM.</description><issn>0965-9978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhbNQsD5-gjAr0cXoTTKTTFYixUehIPhYh3RyUyMzSU2mBf-901bcujqXyznncj9CzilcU6Di5hWUqEulZHOp5BUASF6yAzL5Wx-R45w_AWgFjE7IyywMmHxMxSr6MBQ9Dh_RFibYwgeLzgc_YJFXJuVRYrfBVLjR3fmAZgyluEym731YbudFh30-JYfOdBnPfvWEvD_cv02fyvnz42x6Ny9b1oihrOoWmkpWjiqUvOKiEjUqRlmtFBojKjCUg2G8kdyCQ45UOFg4ZpHiom74CbnY946Hv9aYB9373GLXmYBxnTUTQlEl1Gis98Y2xZwTOr1KvjfpW1PQW2p6R01v8Wgl9Y6aZmPudp_D8YuNx6Rz6zG0aH3CdtA2-n8afgAAVHcl</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Runesha, H.</creator><creator>Nguyen, D.T.</creator><creator>Belegundu, A.D.</creator><creator>Chandrupatla, T.R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980401</creationdate><title>Interior point method and indefinite sparse solver for linear programming problems</title><author>Runesha, H. ; Nguyen, D.T. ; Belegundu, A.D. ; Chandrupatla, T.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-45c08474f19e73436465e9212599eaa640a130a23873d0fe3e16f0bf2de1eb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runesha, H.</creatorcontrib><creatorcontrib>Nguyen, D.T.</creatorcontrib><creatorcontrib>Belegundu, A.D.</creatorcontrib><creatorcontrib>Chandrupatla, T.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in engineering software (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runesha, H.</au><au>Nguyen, D.T.</au><au>Belegundu, A.D.</au><au>Chandrupatla, T.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interior point method and indefinite sparse solver for linear programming problems</atitle><jtitle>Advances in engineering software (1992)</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>29</volume><issue>3</issue><spage>409</spage><epage>414</epage><pages>409-414</pages><issn>0965-9978</issn><abstract>In 1984, N. Karmarkar at AT&amp;T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0965-9978(97)00073-2</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-9978
ispartof Advances in engineering software (1992), 1998-04, Vol.29 (3), p.409-414
issn 0965-9978
language eng
recordid cdi_proquest_miscellaneous_26691969
source Elsevier ScienceDirect Journals
title Interior point method and indefinite sparse solver for linear programming problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interior%20point%20method%20and%20indefinite%20sparse%20solver%20for%20linear%20programming%20problems&rft.jtitle=Advances%20in%20engineering%20software%20(1992)&rft.au=Runesha,%20H.&rft.date=1998-04-01&rft.volume=29&rft.issue=3&rft.spage=409&rft.epage=414&rft.pages=409-414&rft.issn=0965-9978&rft_id=info:doi/10.1016/S0965-9978(97)00073-2&rft_dat=%3Cproquest_cross%3E26691969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26691969&rft_id=info:pmid/&rft_els_id=S0965997897000732&rfr_iscdi=true