Interior point method and indefinite sparse solver for linear programming problems
In 1984, N. Karmarkar at AT&T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex...
Gespeichert in:
Veröffentlicht in: | Advances in engineering software (1992) 1998-04, Vol.29 (3), p.409-414 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 3 |
container_start_page | 409 |
container_title | Advances in engineering software (1992) |
container_volume | 29 |
creator | Runesha, H. Nguyen, D.T. Belegundu, A.D. Chandrupatla, T.R. |
description | In 1984, N. Karmarkar at AT&T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM. |
doi_str_mv | 10.1016/S0965-9978(97)00073-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26691969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0965997897000732</els_id><sourcerecordid>26691969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-45c08474f19e73436465e9212599eaa640a130a23873d0fe3e16f0bf2de1eb583</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhbNQsD5-gjAr0cXoTTKTTFYixUehIPhYh3RyUyMzSU2mBf-901bcujqXyznncj9CzilcU6Di5hWUqEulZHOp5BUASF6yAzL5Wx-R45w_AWgFjE7IyywMmHxMxSr6MBQ9Dh_RFibYwgeLzgc_YJFXJuVRYrfBVLjR3fmAZgyluEym731YbudFh30-JYfOdBnPfvWEvD_cv02fyvnz42x6Ny9b1oihrOoWmkpWjiqUvOKiEjUqRlmtFBojKjCUg2G8kdyCQ45UOFg4ZpHiom74CbnY946Hv9aYB9373GLXmYBxnTUTQlEl1Gis98Y2xZwTOr1KvjfpW1PQW2p6R01v8Wgl9Y6aZmPudp_D8YuNx6Rz6zG0aH3CdtA2-n8afgAAVHcl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26691969</pqid></control><display><type>article</type><title>Interior point method and indefinite sparse solver for linear programming problems</title><source>Elsevier ScienceDirect Journals</source><creator>Runesha, H. ; Nguyen, D.T. ; Belegundu, A.D. ; Chandrupatla, T.R.</creator><creatorcontrib>Runesha, H. ; Nguyen, D.T. ; Belegundu, A.D. ; Chandrupatla, T.R.</creatorcontrib><description>In 1984, N. Karmarkar at AT&T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM.</description><identifier>ISSN: 0965-9978</identifier><identifier>DOI: 10.1016/S0965-9978(97)00073-2</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Advances in engineering software (1992), 1998-04, Vol.29 (3), p.409-414</ispartof><rights>1998 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-45c08474f19e73436465e9212599eaa640a130a23873d0fe3e16f0bf2de1eb583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0965997897000732$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Runesha, H.</creatorcontrib><creatorcontrib>Nguyen, D.T.</creatorcontrib><creatorcontrib>Belegundu, A.D.</creatorcontrib><creatorcontrib>Chandrupatla, T.R.</creatorcontrib><title>Interior point method and indefinite sparse solver for linear programming problems</title><title>Advances in engineering software (1992)</title><description>In 1984, N. Karmarkar at AT&T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM.</description><issn>0965-9978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhbNQsD5-gjAr0cXoTTKTTFYixUehIPhYh3RyUyMzSU2mBf-901bcujqXyznncj9CzilcU6Di5hWUqEulZHOp5BUASF6yAzL5Wx-R45w_AWgFjE7IyywMmHxMxSr6MBQ9Dh_RFibYwgeLzgc_YJFXJuVRYrfBVLjR3fmAZgyluEym731YbudFh30-JYfOdBnPfvWEvD_cv02fyvnz42x6Ny9b1oihrOoWmkpWjiqUvOKiEjUqRlmtFBojKjCUg2G8kdyCQ45UOFg4ZpHiom74CbnY946Hv9aYB9373GLXmYBxnTUTQlEl1Gis98Y2xZwTOr1KvjfpW1PQW2p6R01v8Wgl9Y6aZmPudp_D8YuNx6Rz6zG0aH3CdtA2-n8afgAAVHcl</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Runesha, H.</creator><creator>Nguyen, D.T.</creator><creator>Belegundu, A.D.</creator><creator>Chandrupatla, T.R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980401</creationdate><title>Interior point method and indefinite sparse solver for linear programming problems</title><author>Runesha, H. ; Nguyen, D.T. ; Belegundu, A.D. ; Chandrupatla, T.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-45c08474f19e73436465e9212599eaa640a130a23873d0fe3e16f0bf2de1eb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runesha, H.</creatorcontrib><creatorcontrib>Nguyen, D.T.</creatorcontrib><creatorcontrib>Belegundu, A.D.</creatorcontrib><creatorcontrib>Chandrupatla, T.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in engineering software (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runesha, H.</au><au>Nguyen, D.T.</au><au>Belegundu, A.D.</au><au>Chandrupatla, T.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interior point method and indefinite sparse solver for linear programming problems</atitle><jtitle>Advances in engineering software (1992)</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>29</volume><issue>3</issue><spage>409</spage><epage>414</epage><pages>409-414</pages><issn>0965-9978</issn><abstract>In 1984, N. Karmarkar at AT&T Bell Labs, proposed a new method of solving the linear programming problem. It was claimed that this method, an interior point method (IPM), would be able to solve certain large-scale linear programming problems many times faster on average than the existing Simplex method. Recent studies have indicated that the interior point methods do seem to offer the computational advantages claimed. Furthermore, tremendous progress has also been made in recent years in developing highly efficient sparse solvers, an essential component of IPM. It is the purpose of this paper to explain a version of IPM and a version of direct sparse solver which has the capability of solving indefinite system of equations that arise from IPM.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0965-9978(97)00073-2</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-9978 |
ispartof | Advances in engineering software (1992), 1998-04, Vol.29 (3), p.409-414 |
issn | 0965-9978 |
language | eng |
recordid | cdi_proquest_miscellaneous_26691969 |
source | Elsevier ScienceDirect Journals |
title | Interior point method and indefinite sparse solver for linear programming problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interior%20point%20method%20and%20indefinite%20sparse%20solver%20for%20linear%20programming%20problems&rft.jtitle=Advances%20in%20engineering%20software%20(1992)&rft.au=Runesha,%20H.&rft.date=1998-04-01&rft.volume=29&rft.issue=3&rft.spage=409&rft.epage=414&rft.pages=409-414&rft.issn=0965-9978&rft_id=info:doi/10.1016/S0965-9978(97)00073-2&rft_dat=%3Cproquest_cross%3E26691969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26691969&rft_id=info:pmid/&rft_els_id=S0965997897000732&rfr_iscdi=true |