Adaptive software prefetching in scalable multiprocessors using cache information

Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 2001-08, Vol.27 (9), p.1173-1195
Hauptverfasser: Park, Daeyeon, Hag Seong, Byeong, Saavedra, Rafael H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1195
container_issue 9
container_start_page 1173
container_title Parallel computing
container_volume 27
creator Park, Daeyeon
Hag Seong, Byeong
Saavedra, Rafael H
description Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%.
doi_str_mv 10.1016/S0167-8191(01)00085-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26691149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819101000850</els_id><sourcerecordid>26691149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-7bdb8813f2aaffec66137556e292867359bc2b0c5cfe3eea769fea47fd356d9b3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKEn0UM1abZJc5Jl8R8siKjnkKYTN9I2NUlX_PamrngVhpnD_N4w7yF0SvAlwYRdPafG84oIco7JBca4KnO8h2ak4kXOKWX7aPaHHKKjEN4TxBYVnqGnZaOGaLeQBWfip_KQDR4MRL2x_Vtm-yxo1aq6hawb22gH7zSE4HzIxjARWukNJM4436loXX-MDoxqA5z8zjl6vb15Wd3n68e7h9VyneuiYjHndVNXFaGmUMoY0IwRysuSQSHSntNS1LqosS61AQqgOBMG1IKbhpasETWdo7Pd3fTSxwghys4GDW2renBjkAVjgpCFSGC5A7V3ISRzcvC2U_5LEiynAOVPgHJKR-JUU4ASJ931TgfJxdaCl0Fb6DU01oOOsnH2nwvf6Od6Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26691149</pqid></control><display><type>article</type><title>Adaptive software prefetching in scalable multiprocessors using cache information</title><source>Access via ScienceDirect (Elsevier)</source><creator>Park, Daeyeon ; Hag Seong, Byeong ; Saavedra, Rafael H</creator><creatorcontrib>Park, Daeyeon ; Hag Seong, Byeong ; Saavedra, Rafael H</creatorcontrib><description>Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/S0167-8191(01)00085-0</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive execution ; Adaptive prefetching ; Distributed shared memory ; Multiprocessor ; Software prefetching</subject><ispartof>Parallel computing, 2001-08, Vol.27 (9), p.1173-1195</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-7bdb8813f2aaffec66137556e292867359bc2b0c5cfe3eea769fea47fd356d9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-8191(01)00085-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Park, Daeyeon</creatorcontrib><creatorcontrib>Hag Seong, Byeong</creatorcontrib><creatorcontrib>Saavedra, Rafael H</creatorcontrib><title>Adaptive software prefetching in scalable multiprocessors using cache information</title><title>Parallel computing</title><description>Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%.</description><subject>Adaptive execution</subject><subject>Adaptive prefetching</subject><subject>Distributed shared memory</subject><subject>Multiprocessor</subject><subject>Software prefetching</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKEn0UM1abZJc5Jl8R8siKjnkKYTN9I2NUlX_PamrngVhpnD_N4w7yF0SvAlwYRdPafG84oIco7JBca4KnO8h2ak4kXOKWX7aPaHHKKjEN4TxBYVnqGnZaOGaLeQBWfip_KQDR4MRL2x_Vtm-yxo1aq6hawb22gH7zSE4HzIxjARWukNJM4436loXX-MDoxqA5z8zjl6vb15Wd3n68e7h9VyneuiYjHndVNXFaGmUMoY0IwRysuSQSHSntNS1LqosS61AQqgOBMG1IKbhpasETWdo7Pd3fTSxwghys4GDW2renBjkAVjgpCFSGC5A7V3ISRzcvC2U_5LEiynAOVPgHJKR-JUU4ASJ931TgfJxdaCl0Fb6DU01oOOsnH2nwvf6Od6Hw</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Park, Daeyeon</creator><creator>Hag Seong, Byeong</creator><creator>Saavedra, Rafael H</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010801</creationdate><title>Adaptive software prefetching in scalable multiprocessors using cache information</title><author>Park, Daeyeon ; Hag Seong, Byeong ; Saavedra, Rafael H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-7bdb8813f2aaffec66137556e292867359bc2b0c5cfe3eea769fea47fd356d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive execution</topic><topic>Adaptive prefetching</topic><topic>Distributed shared memory</topic><topic>Multiprocessor</topic><topic>Software prefetching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Daeyeon</creatorcontrib><creatorcontrib>Hag Seong, Byeong</creatorcontrib><creatorcontrib>Saavedra, Rafael H</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Daeyeon</au><au>Hag Seong, Byeong</au><au>Saavedra, Rafael H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive software prefetching in scalable multiprocessors using cache information</atitle><jtitle>Parallel computing</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>27</volume><issue>9</issue><spage>1173</spage><epage>1195</epage><pages>1173-1195</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-8191(01)00085-0</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8191
ispartof Parallel computing, 2001-08, Vol.27 (9), p.1173-1195
issn 0167-8191
1872-7336
language eng
recordid cdi_proquest_miscellaneous_26691149
source Access via ScienceDirect (Elsevier)
subjects Adaptive execution
Adaptive prefetching
Distributed shared memory
Multiprocessor
Software prefetching
title Adaptive software prefetching in scalable multiprocessors using cache information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20software%20prefetching%20in%20scalable%20multiprocessors%20using%20cache%20information&rft.jtitle=Parallel%20computing&rft.au=Park,%20Daeyeon&rft.date=2001-08-01&rft.volume=27&rft.issue=9&rft.spage=1173&rft.epage=1195&rft.pages=1173-1195&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/S0167-8191(01)00085-0&rft_dat=%3Cproquest_cross%3E26691149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26691149&rft_id=info:pmid/&rft_els_id=S0167819101000850&rfr_iscdi=true