Adaptive software prefetching in scalable multiprocessors using cache information
Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors...
Gespeichert in:
Veröffentlicht in: | Parallel computing 2001-08, Vol.27 (9), p.1173-1195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1195 |
---|---|
container_issue | 9 |
container_start_page | 1173 |
container_title | Parallel computing |
container_volume | 27 |
creator | Park, Daeyeon Hag Seong, Byeong Saavedra, Rafael H |
description | Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%. |
doi_str_mv | 10.1016/S0167-8191(01)00085-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26691149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819101000850</els_id><sourcerecordid>26691149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-7bdb8813f2aaffec66137556e292867359bc2b0c5cfe3eea769fea47fd356d9b3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKEn0UM1abZJc5Jl8R8siKjnkKYTN9I2NUlX_PamrngVhpnD_N4w7yF0SvAlwYRdPafG84oIco7JBca4KnO8h2ak4kXOKWX7aPaHHKKjEN4TxBYVnqGnZaOGaLeQBWfip_KQDR4MRL2x_Vtm-yxo1aq6hawb22gH7zSE4HzIxjARWukNJM4436loXX-MDoxqA5z8zjl6vb15Wd3n68e7h9VyneuiYjHndVNXFaGmUMoY0IwRysuSQSHSntNS1LqosS61AQqgOBMG1IKbhpasETWdo7Pd3fTSxwghys4GDW2renBjkAVjgpCFSGC5A7V3ISRzcvC2U_5LEiynAOVPgHJKR-JUU4ASJ931TgfJxdaCl0Fb6DU01oOOsnH2nwvf6Od6Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26691149</pqid></control><display><type>article</type><title>Adaptive software prefetching in scalable multiprocessors using cache information</title><source>Access via ScienceDirect (Elsevier)</source><creator>Park, Daeyeon ; Hag Seong, Byeong ; Saavedra, Rafael H</creator><creatorcontrib>Park, Daeyeon ; Hag Seong, Byeong ; Saavedra, Rafael H</creatorcontrib><description>Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/S0167-8191(01)00085-0</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive execution ; Adaptive prefetching ; Distributed shared memory ; Multiprocessor ; Software prefetching</subject><ispartof>Parallel computing, 2001-08, Vol.27 (9), p.1173-1195</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-7bdb8813f2aaffec66137556e292867359bc2b0c5cfe3eea769fea47fd356d9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-8191(01)00085-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Park, Daeyeon</creatorcontrib><creatorcontrib>Hag Seong, Byeong</creatorcontrib><creatorcontrib>Saavedra, Rafael H</creatorcontrib><title>Adaptive software prefetching in scalable multiprocessors using cache information</title><title>Parallel computing</title><description>Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%.</description><subject>Adaptive execution</subject><subject>Adaptive prefetching</subject><subject>Distributed shared memory</subject><subject>Multiprocessor</subject><subject>Software prefetching</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKEn0UM1abZJc5Jl8R8siKjnkKYTN9I2NUlX_PamrngVhpnD_N4w7yF0SvAlwYRdPafG84oIco7JBca4KnO8h2ak4kXOKWX7aPaHHKKjEN4TxBYVnqGnZaOGaLeQBWfip_KQDR4MRL2x_Vtm-yxo1aq6hawb22gH7zSE4HzIxjARWukNJM4436loXX-MDoxqA5z8zjl6vb15Wd3n68e7h9VyneuiYjHndVNXFaGmUMoY0IwRysuSQSHSntNS1LqosS61AQqgOBMG1IKbhpasETWdo7Pd3fTSxwghys4GDW2renBjkAVjgpCFSGC5A7V3ISRzcvC2U_5LEiynAOVPgHJKR-JUU4ASJ931TgfJxdaCl0Fb6DU01oOOsnH2nwvf6Od6Hw</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Park, Daeyeon</creator><creator>Hag Seong, Byeong</creator><creator>Saavedra, Rafael H</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010801</creationdate><title>Adaptive software prefetching in scalable multiprocessors using cache information</title><author>Park, Daeyeon ; Hag Seong, Byeong ; Saavedra, Rafael H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-7bdb8813f2aaffec66137556e292867359bc2b0c5cfe3eea769fea47fd356d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive execution</topic><topic>Adaptive prefetching</topic><topic>Distributed shared memory</topic><topic>Multiprocessor</topic><topic>Software prefetching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Daeyeon</creatorcontrib><creatorcontrib>Hag Seong, Byeong</creatorcontrib><creatorcontrib>Saavedra, Rafael H</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Daeyeon</au><au>Hag Seong, Byeong</au><au>Saavedra, Rafael H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive software prefetching in scalable multiprocessors using cache information</atitle><jtitle>Parallel computing</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>27</volume><issue>9</issue><spage>1173</spage><epage>1195</epage><pages>1173-1195</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>Scalable multiprocessors present special challenges to static software prefetching because on these systems the memory access latency is not completely determined at compile time. Furthermore, dynamic software prefetching cannot do much better because individual nodes on large-scale multiprocessors would tend to experience different remote memory delays over time. A fixed prefetch distance, even when computed at run-time, cannot perform well for the whole duration of a software pipeline. Here we present an adaptive scheme for software prefetching that makes it possible for nodes to dynamically change, not only the amount of prefetching, but the prefetch distance as well. We show how simple performance data collected by hardware monitors can allow programs to observe, evaluate and change their prefetching policies. Our results show that adaptive prefetching (APF) was capable of improving performance over static and dynamic prefetching by 10%–60%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-8191(01)00085-0</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8191 |
ispartof | Parallel computing, 2001-08, Vol.27 (9), p.1173-1195 |
issn | 0167-8191 1872-7336 |
language | eng |
recordid | cdi_proquest_miscellaneous_26691149 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adaptive execution Adaptive prefetching Distributed shared memory Multiprocessor Software prefetching |
title | Adaptive software prefetching in scalable multiprocessors using cache information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20software%20prefetching%20in%20scalable%20multiprocessors%20using%20cache%20information&rft.jtitle=Parallel%20computing&rft.au=Park,%20Daeyeon&rft.date=2001-08-01&rft.volume=27&rft.issue=9&rft.spage=1173&rft.epage=1195&rft.pages=1173-1195&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/S0167-8191(01)00085-0&rft_dat=%3Cproquest_cross%3E26691149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26691149&rft_id=info:pmid/&rft_els_id=S0167819101000850&rfr_iscdi=true |