Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization
•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts. [Display omitted] Quantitative susceptibili...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2022-07, Vol.79, p.102477-102477, Article 102477 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102477 |
---|---|
container_issue | |
container_start_page | 102477 |
container_title | Medical image analysis |
container_volume | 79 |
creator | Oh, Gyutaek Bae, Hyokyoung Ahn, Hyun-Seo Park, Sung-Hong Moon, Won-Jin Ye, Jong Chul |
description | •Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts.
[Display omitted]
Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction. |
doi_str_mv | 10.1016/j.media.2022.102477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2668911007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841522001244</els_id><sourcerecordid>2668911007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVpaNKkv6BQDN104xs9LWXRRQl9QaCbZC1Gsm6QsSVHjwvpr6-cm2bRRRFIg_TN0XAOQu8J3hFMhstpt7jRw45iStsN5VK-QmeEDaRXnLLXLzURp-htzhPGWHKO36BTJgYsBBZnaLoLua4uHXx2Y5dcjnMtPoYe7kPMxdvuoUIovkDxB9flmq1bizd-9uWxW2Bdfbjvat52GGF9onzIBYJ1XYhpgdn_hk3yAp3sYc7u3fN5ju6-fb29_tHf_Pr-8_rLTW85k6XnlporZUFycFxJToDsBQZsJN-bgREhLOGDHBWVdBiVYlgZA84wBUYQ49g5-nTUXVN8qC4Xvfg29TxDcLFmTYdBXRHSzGjox3_QKdYU2nR6U8dtSd4odqRsijknt9dr8gukR02w3qLQk36KQm9R6GMUrevDs3Y17fWl56_3Dfh8BFwz4-Bd0tl612wbfXK26DH6_37wB5GwnVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726060674</pqid></control><display><type>article</type><title>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</title><source>Elsevier ScienceDirect Journals</source><creator>Oh, Gyutaek ; Bae, Hyokyoung ; Ahn, Hyun-Seo ; Park, Sung-Hong ; Moon, Won-Jin ; Ye, Jong Chul</creator><creatorcontrib>Oh, Gyutaek ; Bae, Hyokyoung ; Ahn, Hyun-Seo ; Park, Sung-Hong ; Moon, Won-Jin ; Ye, Jong Chul</creatorcontrib><description>•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts.
[Display omitted]
Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2022.102477</identifier><identifier>PMID: 35605505</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adaptive instance normalization ; Deep learning ; Dipoles ; Image reconstruction ; Kernels ; Magnetic permeability ; Magnetic resonance imaging ; Magnetic susceptibility ; Mapping ; Medical imaging ; Phase matching ; Quantitative susceptibility mapping ; Resolution-agnostic ; Spatial distribution ; Teaching methods ; Unsupervised deep learning</subject><ispartof>Medical image analysis, 2022-07, Vol.79, p.102477-102477, Article 102477</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</citedby><cites>FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</cites><orcidid>0000-0002-1731-0668 ; 0000-0002-8925-7376 ; 0000-0003-2038-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841522001244$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35605505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Gyutaek</creatorcontrib><creatorcontrib>Bae, Hyokyoung</creatorcontrib><creatorcontrib>Ahn, Hyun-Seo</creatorcontrib><creatorcontrib>Park, Sung-Hong</creatorcontrib><creatorcontrib>Moon, Won-Jin</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><title>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts.
[Display omitted]
Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction.</description><subject>Adaptive instance normalization</subject><subject>Deep learning</subject><subject>Dipoles</subject><subject>Image reconstruction</subject><subject>Kernels</subject><subject>Magnetic permeability</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic susceptibility</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Phase matching</subject><subject>Quantitative susceptibility mapping</subject><subject>Resolution-agnostic</subject><subject>Spatial distribution</subject><subject>Teaching methods</subject><subject>Unsupervised deep learning</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3TAQhUVpaNKkv6BQDN104xs9LWXRRQl9QaCbZC1Gsm6QsSVHjwvpr6-cm2bRRRFIg_TN0XAOQu8J3hFMhstpt7jRw45iStsN5VK-QmeEDaRXnLLXLzURp-htzhPGWHKO36BTJgYsBBZnaLoLua4uHXx2Y5dcjnMtPoYe7kPMxdvuoUIovkDxB9flmq1bizd-9uWxW2Bdfbjvat52GGF9onzIBYJ1XYhpgdn_hk3yAp3sYc7u3fN5ju6-fb29_tHf_Pr-8_rLTW85k6XnlporZUFycFxJToDsBQZsJN-bgREhLOGDHBWVdBiVYlgZA84wBUYQ49g5-nTUXVN8qC4Xvfg29TxDcLFmTYdBXRHSzGjox3_QKdYU2nR6U8dtSd4odqRsijknt9dr8gukR02w3qLQk36KQm9R6GMUrevDs3Y17fWl56_3Dfh8BFwz4-Bd0tl612wbfXK26DH6_37wB5GwnVk</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Oh, Gyutaek</creator><creator>Bae, Hyokyoung</creator><creator>Ahn, Hyun-Seo</creator><creator>Park, Sung-Hong</creator><creator>Moon, Won-Jin</creator><creator>Ye, Jong Chul</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1731-0668</orcidid><orcidid>https://orcid.org/0000-0002-8925-7376</orcidid><orcidid>https://orcid.org/0000-0003-2038-3400</orcidid></search><sort><creationdate>20220701</creationdate><title>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</title><author>Oh, Gyutaek ; Bae, Hyokyoung ; Ahn, Hyun-Seo ; Park, Sung-Hong ; Moon, Won-Jin ; Ye, Jong Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive instance normalization</topic><topic>Deep learning</topic><topic>Dipoles</topic><topic>Image reconstruction</topic><topic>Kernels</topic><topic>Magnetic permeability</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic susceptibility</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Phase matching</topic><topic>Quantitative susceptibility mapping</topic><topic>Resolution-agnostic</topic><topic>Spatial distribution</topic><topic>Teaching methods</topic><topic>Unsupervised deep learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Gyutaek</creatorcontrib><creatorcontrib>Bae, Hyokyoung</creatorcontrib><creatorcontrib>Ahn, Hyun-Seo</creatorcontrib><creatorcontrib>Park, Sung-Hong</creatorcontrib><creatorcontrib>Moon, Won-Jin</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Gyutaek</au><au>Bae, Hyokyoung</au><au>Ahn, Hyun-Seo</au><au>Park, Sung-Hong</au><au>Moon, Won-Jin</au><au>Ye, Jong Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>79</volume><spage>102477</spage><epage>102477</epage><pages>102477-102477</pages><artnum>102477</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts.
[Display omitted]
Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35605505</pmid><doi>10.1016/j.media.2022.102477</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1731-0668</orcidid><orcidid>https://orcid.org/0000-0002-8925-7376</orcidid><orcidid>https://orcid.org/0000-0003-2038-3400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2022-07, Vol.79, p.102477-102477, Article 102477 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_2668911007 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive instance normalization Deep learning Dipoles Image reconstruction Kernels Magnetic permeability Magnetic resonance imaging Magnetic susceptibility Mapping Medical imaging Phase matching Quantitative susceptibility mapping Resolution-agnostic Spatial distribution Teaching methods Unsupervised deep learning |
title | Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20resolution-agnostic%20quantitative%20susceptibility%20mapping%20using%20adaptive%20instance%20normalization&rft.jtitle=Medical%20image%20analysis&rft.au=Oh,%20Gyutaek&rft.date=2022-07-01&rft.volume=79&rft.spage=102477&rft.epage=102477&rft.pages=102477-102477&rft.artnum=102477&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2022.102477&rft_dat=%3Cproquest_cross%3E2668911007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726060674&rft_id=info:pmid/35605505&rft_els_id=S1361841522001244&rfr_iscdi=true |