Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization

•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts. [Display omitted] Quantitative susceptibili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2022-07, Vol.79, p.102477-102477, Article 102477
Hauptverfasser: Oh, Gyutaek, Bae, Hyokyoung, Ahn, Hyun-Seo, Park, Sung-Hong, Moon, Won-Jin, Ye, Jong Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102477
container_issue
container_start_page 102477
container_title Medical image analysis
container_volume 79
creator Oh, Gyutaek
Bae, Hyokyoung
Ahn, Hyun-Seo
Park, Sung-Hong
Moon, Won-Jin
Ye, Jong Chul
description •Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts. [Display omitted] Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction.
doi_str_mv 10.1016/j.media.2022.102477
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2668911007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841522001244</els_id><sourcerecordid>2668911007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVpaNKkv6BQDN104xs9LWXRRQl9QaCbZC1Gsm6QsSVHjwvpr6-cm2bRRRFIg_TN0XAOQu8J3hFMhstpt7jRw45iStsN5VK-QmeEDaRXnLLXLzURp-htzhPGWHKO36BTJgYsBBZnaLoLua4uHXx2Y5dcjnMtPoYe7kPMxdvuoUIovkDxB9flmq1bizd-9uWxW2Bdfbjvat52GGF9onzIBYJ1XYhpgdn_hk3yAp3sYc7u3fN5ju6-fb29_tHf_Pr-8_rLTW85k6XnlporZUFycFxJToDsBQZsJN-bgREhLOGDHBWVdBiVYlgZA84wBUYQ49g5-nTUXVN8qC4Xvfg29TxDcLFmTYdBXRHSzGjox3_QKdYU2nR6U8dtSd4odqRsijknt9dr8gukR02w3qLQk36KQm9R6GMUrevDs3Y17fWl56_3Dfh8BFwz4-Bd0tl612wbfXK26DH6_37wB5GwnVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726060674</pqid></control><display><type>article</type><title>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</title><source>Elsevier ScienceDirect Journals</source><creator>Oh, Gyutaek ; Bae, Hyokyoung ; Ahn, Hyun-Seo ; Park, Sung-Hong ; Moon, Won-Jin ; Ye, Jong Chul</creator><creatorcontrib>Oh, Gyutaek ; Bae, Hyokyoung ; Ahn, Hyun-Seo ; Park, Sung-Hong ; Moon, Won-Jin ; Ye, Jong Chul</creatorcontrib><description>•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts. [Display omitted] Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2022.102477</identifier><identifier>PMID: 35605505</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adaptive instance normalization ; Deep learning ; Dipoles ; Image reconstruction ; Kernels ; Magnetic permeability ; Magnetic resonance imaging ; Magnetic susceptibility ; Mapping ; Medical imaging ; Phase matching ; Quantitative susceptibility mapping ; Resolution-agnostic ; Spatial distribution ; Teaching methods ; Unsupervised deep learning</subject><ispartof>Medical image analysis, 2022-07, Vol.79, p.102477-102477, Article 102477</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</citedby><cites>FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</cites><orcidid>0000-0002-1731-0668 ; 0000-0002-8925-7376 ; 0000-0003-2038-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841522001244$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35605505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Gyutaek</creatorcontrib><creatorcontrib>Bae, Hyokyoung</creatorcontrib><creatorcontrib>Ahn, Hyun-Seo</creatorcontrib><creatorcontrib>Park, Sung-Hong</creatorcontrib><creatorcontrib>Moon, Won-Jin</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><title>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts. [Display omitted] Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction.</description><subject>Adaptive instance normalization</subject><subject>Deep learning</subject><subject>Dipoles</subject><subject>Image reconstruction</subject><subject>Kernels</subject><subject>Magnetic permeability</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic susceptibility</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Phase matching</subject><subject>Quantitative susceptibility mapping</subject><subject>Resolution-agnostic</subject><subject>Spatial distribution</subject><subject>Teaching methods</subject><subject>Unsupervised deep learning</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3TAQhUVpaNKkv6BQDN104xs9LWXRRQl9QaCbZC1Gsm6QsSVHjwvpr6-cm2bRRRFIg_TN0XAOQu8J3hFMhstpt7jRw45iStsN5VK-QmeEDaRXnLLXLzURp-htzhPGWHKO36BTJgYsBBZnaLoLua4uHXx2Y5dcjnMtPoYe7kPMxdvuoUIovkDxB9flmq1bizd-9uWxW2Bdfbjvat52GGF9onzIBYJ1XYhpgdn_hk3yAp3sYc7u3fN5ju6-fb29_tHf_Pr-8_rLTW85k6XnlporZUFycFxJToDsBQZsJN-bgREhLOGDHBWVdBiVYlgZA84wBUYQ49g5-nTUXVN8qC4Xvfg29TxDcLFmTYdBXRHSzGjox3_QKdYU2nR6U8dtSd4odqRsijknt9dr8gukR02w3qLQk36KQm9R6GMUrevDs3Y17fWl56_3Dfh8BFwz4-Bd0tl612wbfXK26DH6_37wB5GwnVk</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Oh, Gyutaek</creator><creator>Bae, Hyokyoung</creator><creator>Ahn, Hyun-Seo</creator><creator>Park, Sung-Hong</creator><creator>Moon, Won-Jin</creator><creator>Ye, Jong Chul</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1731-0668</orcidid><orcidid>https://orcid.org/0000-0002-8925-7376</orcidid><orcidid>https://orcid.org/0000-0003-2038-3400</orcidid></search><sort><creationdate>20220701</creationdate><title>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</title><author>Oh, Gyutaek ; Bae, Hyokyoung ; Ahn, Hyun-Seo ; Park, Sung-Hong ; Moon, Won-Jin ; Ye, Jong Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-4c2b98ca74ae48741a1f50a0b74fb63155c1467d82726d88308bbaeb38ab51be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive instance normalization</topic><topic>Deep learning</topic><topic>Dipoles</topic><topic>Image reconstruction</topic><topic>Kernels</topic><topic>Magnetic permeability</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic susceptibility</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Phase matching</topic><topic>Quantitative susceptibility mapping</topic><topic>Resolution-agnostic</topic><topic>Spatial distribution</topic><topic>Teaching methods</topic><topic>Unsupervised deep learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Gyutaek</creatorcontrib><creatorcontrib>Bae, Hyokyoung</creatorcontrib><creatorcontrib>Ahn, Hyun-Seo</creatorcontrib><creatorcontrib>Park, Sung-Hong</creatorcontrib><creatorcontrib>Moon, Won-Jin</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Gyutaek</au><au>Bae, Hyokyoung</au><au>Ahn, Hyun-Seo</au><au>Park, Sung-Hong</au><au>Moon, Won-Jin</au><au>Ye, Jong Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>79</volume><spage>102477</spage><epage>102477</epage><pages>102477-102477</pages><artnum>102477</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•Unsupervised deep learning with physical model for quantitative susceptibility mapping.•Adaptive instance normalization allows resolution-agnostic reconstruction.•The proposed method is generalizable to various resolution data without streaking artifacts. [Display omitted] Quantitative susceptibility mapping (QSM) is a useful magnetic resonance imaging (MRI) technique that provides the spatial distribution of magnetic susceptibility values of tissues. QSMs can be obtained by deconvolving the dipole kernel from phase images, but the spectral nulls in the dipole kernel make the inversion ill-posed. In recent years, deep learning approaches have shown a comparable QSM reconstruction performance to the classic approaches, in addition to the fast reconstruction time. Most of the existing deep learning methods are, however, based on supervised learning, so matched pairs of input phase images and ground-truth maps are needed. Moreover, it was reported that the deep learning-based methods fail to reconstruct QSM when the resolution of test data is different from the trained resolution. To address this, here we propose an unsupervised resolution-agnostic QSM deep learning method. The proposed method does not require QSM labels for training and reconstructs QSM with various resolutions by using adaptive instance normalization. Experimental results and clinical validation confirm that the proposed method provides accurate QSM with various resolutions compared to other deep learning approaches, and shows competitive performance to the best classical approaches in addition to the ultra-fast reconstruction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35605505</pmid><doi>10.1016/j.media.2022.102477</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1731-0668</orcidid><orcidid>https://orcid.org/0000-0002-8925-7376</orcidid><orcidid>https://orcid.org/0000-0003-2038-3400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2022-07, Vol.79, p.102477-102477, Article 102477
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2668911007
source Elsevier ScienceDirect Journals
subjects Adaptive instance normalization
Deep learning
Dipoles
Image reconstruction
Kernels
Magnetic permeability
Magnetic resonance imaging
Magnetic susceptibility
Mapping
Medical imaging
Phase matching
Quantitative susceptibility mapping
Resolution-agnostic
Spatial distribution
Teaching methods
Unsupervised deep learning
title Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20resolution-agnostic%20quantitative%20susceptibility%20mapping%20using%20adaptive%20instance%20normalization&rft.jtitle=Medical%20image%20analysis&rft.au=Oh,%20Gyutaek&rft.date=2022-07-01&rft.volume=79&rft.spage=102477&rft.epage=102477&rft.pages=102477-102477&rft.artnum=102477&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2022.102477&rft_dat=%3Cproquest_cross%3E2668911007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726060674&rft_id=info:pmid/35605505&rft_els_id=S1361841522001244&rfr_iscdi=true