Invariant distributions and collisionless equilibria

This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 1998-10, Vol.299 (4), p.1139-1145
1. Verfasser: Kandrup, Henry E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1145
container_issue 4
container_start_page 1139
container_title Monthly notices of the Royal Astronomical Society
container_volume 299
creator Kandrup, Henry E.
description This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential.
doi_str_mv 10.1046/j.1365-8711.1998.01865.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26688804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1046/j.1365-8711.1998.01865.x</oup_id><sourcerecordid>26688804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4745-d5c8bc5cb215bc787abbe40e463aa581dad2f50eddc1b2b32f317f11965746ff3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoOKf_Q0_eWpOm-dGDB5nODeZ0Q0G8hCRNITNrt6bV7b-3XcWTgqe88L6f93gfAAIEIwQTerWKEKYk5AyhCKUpjyDilES7IzA4NOKU0mMwgBD3oVNw5v0KQpjgmA5AMi0-ZGVlUQeZ9XVlVVPbsvCBLLJAl85Z336d8T4w28Y6q9rwOTjJpfPm4vsdgpfx3fNoEs4e76ejm1moE5aQMCOaK020ihFRmnEmlTIJNAnFUhKOMpnFOYEmyzRSscJxjhHLEUopYQnNczwEl_3cTVVuG-NrsbZeG-dkYcrGi5hSznl7yRDwPqir0vvK5GJT2bWs9gJB0WkSK9HZEJ0B0WkSB01i16LXPfppndn_mxMP82VXtTzu-bLZ_EGHv20Ne6p1bnY_nKzeBWWYETF5fRNLeovHT4uFmOMvWoiNzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26688804</pqid></control><display><type>article</type><title>Invariant distributions and collisionless equilibria</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><creator>Kandrup, Henry E.</creator><creatorcontrib>Kandrup, Henry E.</creatorcontrib><description>This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1046/j.1365-8711.1998.01865.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>celestial mechanics ; galaxies: evolution ; galaxies: kinematics and dynamics ; galaxies: structure ; methods: numerical ; stellar dynamics</subject><ispartof>Monthly notices of the Royal Astronomical Society, 1998-10, Vol.299 (4), p.1139-1145</ispartof><rights>RAS 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4745-d5c8bc5cb215bc787abbe40e463aa581dad2f50eddc1b2b32f317f11965746ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-8711.1998.01865.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-8711.1998.01865.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Kandrup, Henry E.</creatorcontrib><title>Invariant distributions and collisionless equilibria</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential.</description><subject>celestial mechanics</subject><subject>galaxies: evolution</subject><subject>galaxies: kinematics and dynamics</subject><subject>galaxies: structure</subject><subject>methods: numerical</subject><subject>stellar dynamics</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAUx4MoOKf_Q0_eWpOm-dGDB5nODeZ0Q0G8hCRNITNrt6bV7b-3XcWTgqe88L6f93gfAAIEIwQTerWKEKYk5AyhCKUpjyDilES7IzA4NOKU0mMwgBD3oVNw5v0KQpjgmA5AMi0-ZGVlUQeZ9XVlVVPbsvCBLLJAl85Z336d8T4w28Y6q9rwOTjJpfPm4vsdgpfx3fNoEs4e76ejm1moE5aQMCOaK020ihFRmnEmlTIJNAnFUhKOMpnFOYEmyzRSscJxjhHLEUopYQnNczwEl_3cTVVuG-NrsbZeG-dkYcrGi5hSznl7yRDwPqir0vvK5GJT2bWs9gJB0WkSK9HZEJ0B0WkSB01i16LXPfppndn_mxMP82VXtTzu-bLZ_EGHv20Ne6p1bnY_nKzeBWWYETF5fRNLeovHT4uFmOMvWoiNzg</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Kandrup, Henry E.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19981001</creationdate><title>Invariant distributions and collisionless equilibria</title><author>Kandrup, Henry E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4745-d5c8bc5cb215bc787abbe40e463aa581dad2f50eddc1b2b32f317f11965746ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>celestial mechanics</topic><topic>galaxies: evolution</topic><topic>galaxies: kinematics and dynamics</topic><topic>galaxies: structure</topic><topic>methods: numerical</topic><topic>stellar dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandrup, Henry E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandrup, Henry E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant distributions and collisionless equilibria</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>1998-10-01</date><risdate>1998</risdate><volume>299</volume><issue>4</issue><spage>1139</spage><epage>1145</epage><pages>1139-1145</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1046/j.1365-8711.1998.01865.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 1998-10, Vol.299 (4), p.1139-1145
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_26688804
source Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection
subjects celestial mechanics
galaxies: evolution
galaxies: kinematics and dynamics
galaxies: structure
methods: numerical
stellar dynamics
title Invariant distributions and collisionless equilibria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20distributions%20and%20collisionless%20equilibria&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Kandrup,%20Henry%20E.&rft.date=1998-10-01&rft.volume=299&rft.issue=4&rft.spage=1139&rft.epage=1145&rft.pages=1139-1145&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1046/j.1365-8711.1998.01865.x&rft_dat=%3Cproquest_cross%3E26688804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26688804&rft_id=info:pmid/&rft_oup_id=10.1046/j.1365-8711.1998.01865.x&rfr_iscdi=true