Invariant distributions and collisionless equilibria
This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium ca...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 1998-10, Vol.299 (4), p.1139-1145 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1145 |
---|---|
container_issue | 4 |
container_start_page | 1139 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 299 |
creator | Kandrup, Henry E. |
description | This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential. |
doi_str_mv | 10.1046/j.1365-8711.1998.01865.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26688804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1046/j.1365-8711.1998.01865.x</oup_id><sourcerecordid>26688804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4745-d5c8bc5cb215bc787abbe40e463aa581dad2f50eddc1b2b32f317f11965746ff3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoOKf_Q0_eWpOm-dGDB5nODeZ0Q0G8hCRNITNrt6bV7b-3XcWTgqe88L6f93gfAAIEIwQTerWKEKYk5AyhCKUpjyDilES7IzA4NOKU0mMwgBD3oVNw5v0KQpjgmA5AMi0-ZGVlUQeZ9XVlVVPbsvCBLLJAl85Z336d8T4w28Y6q9rwOTjJpfPm4vsdgpfx3fNoEs4e76ejm1moE5aQMCOaK020ihFRmnEmlTIJNAnFUhKOMpnFOYEmyzRSscJxjhHLEUopYQnNczwEl_3cTVVuG-NrsbZeG-dkYcrGi5hSznl7yRDwPqir0vvK5GJT2bWs9gJB0WkSK9HZEJ0B0WkSB01i16LXPfppndn_mxMP82VXtTzu-bLZ_EGHv20Ne6p1bnY_nKzeBWWYETF5fRNLeovHT4uFmOMvWoiNzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26688804</pqid></control><display><type>article</type><title>Invariant distributions and collisionless equilibria</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><creator>Kandrup, Henry E.</creator><creatorcontrib>Kandrup, Henry E.</creatorcontrib><description>This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1046/j.1365-8711.1998.01865.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>celestial mechanics ; galaxies: evolution ; galaxies: kinematics and dynamics ; galaxies: structure ; methods: numerical ; stellar dynamics</subject><ispartof>Monthly notices of the Royal Astronomical Society, 1998-10, Vol.299 (4), p.1139-1145</ispartof><rights>RAS 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4745-d5c8bc5cb215bc787abbe40e463aa581dad2f50eddc1b2b32f317f11965746ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-8711.1998.01865.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-8711.1998.01865.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Kandrup, Henry E.</creatorcontrib><title>Invariant distributions and collisionless equilibria</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential.</description><subject>celestial mechanics</subject><subject>galaxies: evolution</subject><subject>galaxies: kinematics and dynamics</subject><subject>galaxies: structure</subject><subject>methods: numerical</subject><subject>stellar dynamics</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAUx4MoOKf_Q0_eWpOm-dGDB5nODeZ0Q0G8hCRNITNrt6bV7b-3XcWTgqe88L6f93gfAAIEIwQTerWKEKYk5AyhCKUpjyDilES7IzA4NOKU0mMwgBD3oVNw5v0KQpjgmA5AMi0-ZGVlUQeZ9XVlVVPbsvCBLLJAl85Z336d8T4w28Y6q9rwOTjJpfPm4vsdgpfx3fNoEs4e76ejm1moE5aQMCOaK020ihFRmnEmlTIJNAnFUhKOMpnFOYEmyzRSscJxjhHLEUopYQnNczwEl_3cTVVuG-NrsbZeG-dkYcrGi5hSznl7yRDwPqir0vvK5GJT2bWs9gJB0WkSK9HZEJ0B0WkSB01i16LXPfppndn_mxMP82VXtTzu-bLZ_EGHv20Ne6p1bnY_nKzeBWWYETF5fRNLeovHT4uFmOMvWoiNzg</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Kandrup, Henry E.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19981001</creationdate><title>Invariant distributions and collisionless equilibria</title><author>Kandrup, Henry E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4745-d5c8bc5cb215bc787abbe40e463aa581dad2f50eddc1b2b32f317f11965746ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>celestial mechanics</topic><topic>galaxies: evolution</topic><topic>galaxies: kinematics and dynamics</topic><topic>galaxies: structure</topic><topic>methods: numerical</topic><topic>stellar dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandrup, Henry E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandrup, Henry E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant distributions and collisionless equilibria</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>1998-10-01</date><risdate>1998</risdate><volume>299</volume><issue>4</issue><spage>1139</spage><epage>1145</epage><pages>1139-1145</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>This paper discusses the possibility of constructing time‐independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self‐consistent equilibrium can be constructed from any set of time‐independent phase‐space building blocks which, when combined, generate the mass distribution associated with an assumed time‐independent potential. This approach provides a way to justify Schwarzschild’s method for the numerical construction of self‐consistent equilibria with arbitrary time‐independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild’s method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non‐integrable potential.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1046/j.1365-8711.1998.01865.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 1998-10, Vol.299 (4), p.1139-1145 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_26688804 |
source | Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection |
subjects | celestial mechanics galaxies: evolution galaxies: kinematics and dynamics galaxies: structure methods: numerical stellar dynamics |
title | Invariant distributions and collisionless equilibria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20distributions%20and%20collisionless%20equilibria&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Kandrup,%20Henry%20E.&rft.date=1998-10-01&rft.volume=299&rft.issue=4&rft.spage=1139&rft.epage=1145&rft.pages=1139-1145&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1046/j.1365-8711.1998.01865.x&rft_dat=%3Cproquest_cross%3E26688804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26688804&rft_id=info:pmid/&rft_oup_id=10.1046/j.1365-8711.1998.01865.x&rfr_iscdi=true |