Domain decomposition models for parallel Monte Carlo transport
We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. T...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2001-01, Vol.18 (1), p.5-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | The Journal of supercomputing |
container_volume | 18 |
creator | Alme, Henry J Rodrigue, Garry H Zimmerman, George B |
description | We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition. |
doi_str_mv | 10.1023/A:1008196906753 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_26685073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26685073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-63ec33722d685f5a01e2af530ac63d58d277130e3c1ac36f1b5204839292aad33</originalsourceid><addsrcrecordid>eNotzLFOwzAQAFAPIFEKM6sntsD5LrYTBqSqUEAqYoG5OmxHCnLiYLv_DxJMb3tCXCm4UYB0u7lTAJ3qTQ_GajoRK-gRmk63eCbOS_kCgJYsrcT9Q5p4nKUPLk1LKmMd0yyn5EMsckhZLpw5xhDla5prkFvOMcmaeS5LyvVCnA4cS7j8dy0-do_v2-dm__b0st3sG4cEtTEUHJFF9KbTg2ZQAXnQBOwMed15tFYRBHKKHZlBfWqEtqMee2T2RGtx_fcuOX0fQ6mHaSwuxMhzSMdyQPMbgyX6Af9wSaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26685073</pqid></control><display><type>article</type><title>Domain decomposition models for parallel Monte Carlo transport</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alme, Henry J ; Rodrigue, Garry H ; Zimmerman, George B</creator><creatorcontrib>Alme, Henry J ; Rodrigue, Garry H ; Zimmerman, George B</creatorcontrib><description>We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition.</description><identifier>ISSN: 0920-8542</identifier><identifier>DOI: 10.1023/A:1008196906753</identifier><language>eng</language><ispartof>The Journal of supercomputing, 2001-01, Vol.18 (1), p.5-23</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-63ec33722d685f5a01e2af530ac63d58d277130e3c1ac36f1b5204839292aad33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alme, Henry J</creatorcontrib><creatorcontrib>Rodrigue, Garry H</creatorcontrib><creatorcontrib>Zimmerman, George B</creatorcontrib><title>Domain decomposition models for parallel Monte Carlo transport</title><title>The Journal of supercomputing</title><description>We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition.</description><issn>0920-8542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNotzLFOwzAQAFAPIFEKM6sntsD5LrYTBqSqUEAqYoG5OmxHCnLiYLv_DxJMb3tCXCm4UYB0u7lTAJ3qTQ_GajoRK-gRmk63eCbOS_kCgJYsrcT9Q5p4nKUPLk1LKmMd0yyn5EMsckhZLpw5xhDla5prkFvOMcmaeS5LyvVCnA4cS7j8dy0-do_v2-dm__b0st3sG4cEtTEUHJFF9KbTg2ZQAXnQBOwMed15tFYRBHKKHZlBfWqEtqMee2T2RGtx_fcuOX0fQ6mHaSwuxMhzSMdyQPMbgyX6Af9wSaA</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Alme, Henry J</creator><creator>Rodrigue, Garry H</creator><creator>Zimmerman, George B</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010101</creationdate><title>Domain decomposition models for parallel Monte Carlo transport</title><author>Alme, Henry J ; Rodrigue, Garry H ; Zimmerman, George B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-63ec33722d685f5a01e2af530ac63d58d277130e3c1ac36f1b5204839292aad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alme, Henry J</creatorcontrib><creatorcontrib>Rodrigue, Garry H</creatorcontrib><creatorcontrib>Zimmerman, George B</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alme, Henry J</au><au>Rodrigue, Garry H</au><au>Zimmerman, George B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain decomposition models for parallel Monte Carlo transport</atitle><jtitle>The Journal of supercomputing</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>18</volume><issue>1</issue><spage>5</spage><epage>23</epage><pages>5-23</pages><issn>0920-8542</issn><abstract>We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition.</abstract><doi>10.1023/A:1008196906753</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2001-01, Vol.18 (1), p.5-23 |
issn | 0920-8542 |
language | eng |
recordid | cdi_proquest_miscellaneous_26685073 |
source | SpringerLink Journals - AutoHoldings |
title | Domain decomposition models for parallel Monte Carlo transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20decomposition%20models%20for%20parallel%20Monte%20Carlo%20transport&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Alme,%20Henry%20J&rft.date=2001-01-01&rft.volume=18&rft.issue=1&rft.spage=5&rft.epage=23&rft.pages=5-23&rft.issn=0920-8542&rft_id=info:doi/10.1023/A:1008196906753&rft_dat=%3Cproquest%3E26685073%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26685073&rft_id=info:pmid/&rfr_iscdi=true |