Domain decomposition models for parallel Monte Carlo transport

We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2001-01, Vol.18 (1), p.5-23
Hauptverfasser: Alme, Henry J, Rodrigue, Garry H, Zimmerman, George B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 5
container_title The Journal of supercomputing
container_volume 18
creator Alme, Henry J
Rodrigue, Garry H
Zimmerman, George B
description We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition.
doi_str_mv 10.1023/A:1008196906753
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_26685073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26685073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-63ec33722d685f5a01e2af530ac63d58d277130e3c1ac36f1b5204839292aad33</originalsourceid><addsrcrecordid>eNotzLFOwzAQAFAPIFEKM6sntsD5LrYTBqSqUEAqYoG5OmxHCnLiYLv_DxJMb3tCXCm4UYB0u7lTAJ3qTQ_GajoRK-gRmk63eCbOS_kCgJYsrcT9Q5p4nKUPLk1LKmMd0yyn5EMsckhZLpw5xhDla5prkFvOMcmaeS5LyvVCnA4cS7j8dy0-do_v2-dm__b0st3sG4cEtTEUHJFF9KbTg2ZQAXnQBOwMed15tFYRBHKKHZlBfWqEtqMee2T2RGtx_fcuOX0fQ6mHaSwuxMhzSMdyQPMbgyX6Af9wSaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26685073</pqid></control><display><type>article</type><title>Domain decomposition models for parallel Monte Carlo transport</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alme, Henry J ; Rodrigue, Garry H ; Zimmerman, George B</creator><creatorcontrib>Alme, Henry J ; Rodrigue, Garry H ; Zimmerman, George B</creatorcontrib><description>We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition.</description><identifier>ISSN: 0920-8542</identifier><identifier>DOI: 10.1023/A:1008196906753</identifier><language>eng</language><ispartof>The Journal of supercomputing, 2001-01, Vol.18 (1), p.5-23</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-63ec33722d685f5a01e2af530ac63d58d277130e3c1ac36f1b5204839292aad33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alme, Henry J</creatorcontrib><creatorcontrib>Rodrigue, Garry H</creatorcontrib><creatorcontrib>Zimmerman, George B</creatorcontrib><title>Domain decomposition models for parallel Monte Carlo transport</title><title>The Journal of supercomputing</title><description>We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition.</description><issn>0920-8542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNotzLFOwzAQAFAPIFEKM6sntsD5LrYTBqSqUEAqYoG5OmxHCnLiYLv_DxJMb3tCXCm4UYB0u7lTAJ3qTQ_GajoRK-gRmk63eCbOS_kCgJYsrcT9Q5p4nKUPLk1LKmMd0yyn5EMsckhZLpw5xhDla5prkFvOMcmaeS5LyvVCnA4cS7j8dy0-do_v2-dm__b0st3sG4cEtTEUHJFF9KbTg2ZQAXnQBOwMed15tFYRBHKKHZlBfWqEtqMee2T2RGtx_fcuOX0fQ6mHaSwuxMhzSMdyQPMbgyX6Af9wSaA</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Alme, Henry J</creator><creator>Rodrigue, Garry H</creator><creator>Zimmerman, George B</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010101</creationdate><title>Domain decomposition models for parallel Monte Carlo transport</title><author>Alme, Henry J ; Rodrigue, Garry H ; Zimmerman, George B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-63ec33722d685f5a01e2af530ac63d58d277130e3c1ac36f1b5204839292aad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alme, Henry J</creatorcontrib><creatorcontrib>Rodrigue, Garry H</creatorcontrib><creatorcontrib>Zimmerman, George B</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alme, Henry J</au><au>Rodrigue, Garry H</au><au>Zimmerman, George B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain decomposition models for parallel Monte Carlo transport</atitle><jtitle>The Journal of supercomputing</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>18</volume><issue>1</issue><spage>5</spage><epage>23</epage><pages>5-23</pages><issn>0920-8542</issn><abstract>We present a strategy for parallelizing computations that use the transport method. It combines spatial domain decomposition with domain replication to realize the scaling benefits of replication while allowing for problems whose computational mesh will not fit in a single processor's memory. The mesh is decomposed into a small number of spatial domains - typically fewer domains than there are processors - and heuristics are used to estimate the computational effort required to generate the solution in each subdomain using Monte Carlo. That work estimate determines the number of times a subdomain is replicated relative to the others. Timing of runs for two problems show that the new method scales better than traditional domain decomposition.</abstract><doi>10.1023/A:1008196906753</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2001-01, Vol.18 (1), p.5-23
issn 0920-8542
language eng
recordid cdi_proquest_miscellaneous_26685073
source SpringerLink Journals - AutoHoldings
title Domain decomposition models for parallel Monte Carlo transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20decomposition%20models%20for%20parallel%20Monte%20Carlo%20transport&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Alme,%20Henry%20J&rft.date=2001-01-01&rft.volume=18&rft.issue=1&rft.spage=5&rft.epage=23&rft.pages=5-23&rft.issn=0920-8542&rft_id=info:doi/10.1023/A:1008196906753&rft_dat=%3Cproquest%3E26685073%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26685073&rft_id=info:pmid/&rfr_iscdi=true