Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization
Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2022-07, Vol.69 (7), p.2339-2351 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2351 |
---|---|
container_issue | 7 |
container_start_page | 2339 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 69 |
creator | Pyle, Richard J. Hughes, Robert R. Ali, Amine Ait Si Wilcox, Paul D. |
description | Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential for qualifying NDE inspections and building trust in their predictions. Therefore, this article aims to demonstrate how UQ can best be achieved for deep learning in the context of crack sizing for inline pipe inspection. A convolutional neural network architecture is used to size surface breaking defects from plane wave imaging (PWI) images with two modern UQ methods: deep ensembles and Monte Carlo dropout. The network is trained using PWI images of surface breaking defects simulated with a hybrid finite element / ray-based model. Successful UQ is judged by calibration and anomaly detection, which refer to whether in-domain model error is proportional to uncertainty and if out of training domain data is assigned high uncertainty. Calibration is tested using simulated and experimental images of surface breaking cracks, while anomaly detection is tested using experimental side-drilled holes and simulated embedded cracks. Monte Carlo dropout demonstrates poor uncertainty quantification with little separation between in and out-of-distribution data and a weak linear fit ( R=0.84 ) between experimental root-mean-square-error and uncertainty. Deep ensembles improve upon Monte Carlo dropout in both calibration ( R=0.95 ) and anomaly detection. Adding spectral normalization and residual connections to deep ensembles slightly improves calibration ( R=0.98 ) and significantly improves the reliability of assigning high uncertainty to out-of-distribution samples. |
doi_str_mv | 10.1109/TUFFC.2022.3176926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2668221403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9779747</ieee_id><sourcerecordid>2668221403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-7218400497a9b8ed07bdaeeffab351bfdb2b5d895f2eccb653c6f1d81089d27b3</originalsourceid><addsrcrecordid>eNpdkMtu2zAQRYmgReI8fqAFAgHZdCOHD_G1LJQ6DWCgMGCvBZIapkxtyiGlRfr1YWI3i65mMedezByEvhA8JwTr2_VmsWjnFFM6Z0QKTcUJmhFOea0055_QDCvFa4YJPkPnOT9hTJpG01N0xrjAjRZ8hlab6CCNJsTxpVpNJo7BB2fGMMTKD6m6A9hXSzAphvhYhVhttmMyeYjBVW0y7k_V_jZljpDC3_fYJfrszTbD1XFeoM3ix7r9WS9_3T-035e1Y5qPtaRENbhcIY22CnosbW8AvDeWcWJ9b6nlfXnEU3DOCs6c8KRXBCvdU2nZBfp26N2n4XmCPHa7kB1stybCMOWOCqEoJQ1mBb35D30aphTLdYVSVBPBuCwUPVAuDTkn8N0-hZ1JLx3B3Zvw7l149ya8Owovoetj9WR30H9E_hkuwNcDEADgY62l1LKR7BXCIIUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682916357</pqid></control><display><type>article</type><title>Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization</title><source>IEEE Electronic Library (IEL)</source><creator>Pyle, Richard J. ; Hughes, Robert R. ; Ali, Amine Ait Si ; Wilcox, Paul D.</creator><creatorcontrib>Pyle, Richard J. ; Hughes, Robert R. ; Ali, Amine Ait Si ; Wilcox, Paul D.</creatorcontrib><description><![CDATA[Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential for qualifying NDE inspections and building trust in their predictions. Therefore, this article aims to demonstrate how UQ can best be achieved for deep learning in the context of crack sizing for inline pipe inspection. A convolutional neural network architecture is used to size surface breaking defects from plane wave imaging (PWI) images with two modern UQ methods: deep ensembles and Monte Carlo dropout. The network is trained using PWI images of surface breaking defects simulated with a hybrid finite element / ray-based model. Successful UQ is judged by calibration and anomaly detection, which refer to whether in-domain model error is proportional to uncertainty and if out of training domain data is assigned high uncertainty. Calibration is tested using simulated and experimental images of surface breaking cracks, while anomaly detection is tested using experimental side-drilled holes and simulated embedded cracks. Monte Carlo dropout demonstrates poor uncertainty quantification with little separation between in and out-of-distribution data and a weak linear fit (<inline-formula> <tex-math notation="LaTeX">R=0.84 </tex-math></inline-formula>) between experimental root-mean-square-error and uncertainty. Deep ensembles improve upon Monte Carlo dropout in both calibration (<inline-formula> <tex-math notation="LaTeX">R=0.95 </tex-math></inline-formula>) and anomaly detection. Adding spectral normalization and residual connections to deep ensembles slightly improves calibration (<inline-formula> <tex-math notation="LaTeX">R=0.98 </tex-math></inline-formula>) and significantly improves the reliability of assigning high uncertainty to out-of-distribution samples.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2022.3176926</identifier><identifier>PMID: 35604965</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anomalies ; Arrays ; Artificial neural networks ; Calibration ; Computer architecture ; Computer simulation ; Cracks ; Data analysis ; Deep learning ; defect characterization ; Defects ; Domains ; Finite element method ; Flaw detection ; Human performance ; Inspection ; Monte Carlo simulation ; neural networks ; Nondestructive testing ; out-of-distribution (OOD) detection ; plane wave imaging (PWI) ; Plane waves ; simulation ; Surface cracks ; Training ; Training data ; Ultrasonic testing ; ultrasound ; Uncertainty ; uncertainty estimation</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-07, Vol.69 (7), p.2339-2351</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-7218400497a9b8ed07bdaeeffab351bfdb2b5d895f2eccb653c6f1d81089d27b3</citedby><cites>FETCH-LOGICAL-c395t-7218400497a9b8ed07bdaeeffab351bfdb2b5d895f2eccb653c6f1d81089d27b3</cites><orcidid>0000-0002-5236-7467 ; 0000-0003-1648-5228 ; 0000-0002-8569-8975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9779747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9779747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35604965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyle, Richard J.</creatorcontrib><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Ali, Amine Ait Si</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><title>Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description><![CDATA[Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential for qualifying NDE inspections and building trust in their predictions. Therefore, this article aims to demonstrate how UQ can best be achieved for deep learning in the context of crack sizing for inline pipe inspection. A convolutional neural network architecture is used to size surface breaking defects from plane wave imaging (PWI) images with two modern UQ methods: deep ensembles and Monte Carlo dropout. The network is trained using PWI images of surface breaking defects simulated with a hybrid finite element / ray-based model. Successful UQ is judged by calibration and anomaly detection, which refer to whether in-domain model error is proportional to uncertainty and if out of training domain data is assigned high uncertainty. Calibration is tested using simulated and experimental images of surface breaking cracks, while anomaly detection is tested using experimental side-drilled holes and simulated embedded cracks. Monte Carlo dropout demonstrates poor uncertainty quantification with little separation between in and out-of-distribution data and a weak linear fit (<inline-formula> <tex-math notation="LaTeX">R=0.84 </tex-math></inline-formula>) between experimental root-mean-square-error and uncertainty. Deep ensembles improve upon Monte Carlo dropout in both calibration (<inline-formula> <tex-math notation="LaTeX">R=0.95 </tex-math></inline-formula>) and anomaly detection. Adding spectral normalization and residual connections to deep ensembles slightly improves calibration (<inline-formula> <tex-math notation="LaTeX">R=0.98 </tex-math></inline-formula>) and significantly improves the reliability of assigning high uncertainty to out-of-distribution samples.]]></description><subject>Anomalies</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Cracks</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>defect characterization</subject><subject>Defects</subject><subject>Domains</subject><subject>Finite element method</subject><subject>Flaw detection</subject><subject>Human performance</subject><subject>Inspection</subject><subject>Monte Carlo simulation</subject><subject>neural networks</subject><subject>Nondestructive testing</subject><subject>out-of-distribution (OOD) detection</subject><subject>plane wave imaging (PWI)</subject><subject>Plane waves</subject><subject>simulation</subject><subject>Surface cracks</subject><subject>Training</subject><subject>Training data</subject><subject>Ultrasonic testing</subject><subject>ultrasound</subject><subject>Uncertainty</subject><subject>uncertainty estimation</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtu2zAQRYmgReI8fqAFAgHZdCOHD_G1LJQ6DWCgMGCvBZIapkxtyiGlRfr1YWI3i65mMedezByEvhA8JwTr2_VmsWjnFFM6Z0QKTcUJmhFOea0055_QDCvFa4YJPkPnOT9hTJpG01N0xrjAjRZ8hlab6CCNJsTxpVpNJo7BB2fGMMTKD6m6A9hXSzAphvhYhVhttmMyeYjBVW0y7k_V_jZljpDC3_fYJfrszTbD1XFeoM3ix7r9WS9_3T-035e1Y5qPtaRENbhcIY22CnosbW8AvDeWcWJ9b6nlfXnEU3DOCs6c8KRXBCvdU2nZBfp26N2n4XmCPHa7kB1stybCMOWOCqEoJQ1mBb35D30aphTLdYVSVBPBuCwUPVAuDTkn8N0-hZ1JLx3B3Zvw7l149ya8Owovoetj9WR30H9E_hkuwNcDEADgY62l1LKR7BXCIIUs</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Pyle, Richard J.</creator><creator>Hughes, Robert R.</creator><creator>Ali, Amine Ait Si</creator><creator>Wilcox, Paul D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5236-7467</orcidid><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0000-0002-8569-8975</orcidid></search><sort><creationdate>20220701</creationdate><title>Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization</title><author>Pyle, Richard J. ; Hughes, Robert R. ; Ali, Amine Ait Si ; Wilcox, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-7218400497a9b8ed07bdaeeffab351bfdb2b5d895f2eccb653c6f1d81089d27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Cracks</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>defect characterization</topic><topic>Defects</topic><topic>Domains</topic><topic>Finite element method</topic><topic>Flaw detection</topic><topic>Human performance</topic><topic>Inspection</topic><topic>Monte Carlo simulation</topic><topic>neural networks</topic><topic>Nondestructive testing</topic><topic>out-of-distribution (OOD) detection</topic><topic>plane wave imaging (PWI)</topic><topic>Plane waves</topic><topic>simulation</topic><topic>Surface cracks</topic><topic>Training</topic><topic>Training data</topic><topic>Ultrasonic testing</topic><topic>ultrasound</topic><topic>Uncertainty</topic><topic>uncertainty estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyle, Richard J.</creatorcontrib><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Ali, Amine Ait Si</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pyle, Richard J.</au><au>Hughes, Robert R.</au><au>Ali, Amine Ait Si</au><au>Wilcox, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>69</volume><issue>7</issue><spage>2339</spage><epage>2351</epage><pages>2339-2351</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential for qualifying NDE inspections and building trust in their predictions. Therefore, this article aims to demonstrate how UQ can best be achieved for deep learning in the context of crack sizing for inline pipe inspection. A convolutional neural network architecture is used to size surface breaking defects from plane wave imaging (PWI) images with two modern UQ methods: deep ensembles and Monte Carlo dropout. The network is trained using PWI images of surface breaking defects simulated with a hybrid finite element / ray-based model. Successful UQ is judged by calibration and anomaly detection, which refer to whether in-domain model error is proportional to uncertainty and if out of training domain data is assigned high uncertainty. Calibration is tested using simulated and experimental images of surface breaking cracks, while anomaly detection is tested using experimental side-drilled holes and simulated embedded cracks. Monte Carlo dropout demonstrates poor uncertainty quantification with little separation between in and out-of-distribution data and a weak linear fit (<inline-formula> <tex-math notation="LaTeX">R=0.84 </tex-math></inline-formula>) between experimental root-mean-square-error and uncertainty. Deep ensembles improve upon Monte Carlo dropout in both calibration (<inline-formula> <tex-math notation="LaTeX">R=0.95 </tex-math></inline-formula>) and anomaly detection. Adding spectral normalization and residual connections to deep ensembles slightly improves calibration (<inline-formula> <tex-math notation="LaTeX">R=0.98 </tex-math></inline-formula>) and significantly improves the reliability of assigning high uncertainty to out-of-distribution samples.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>35604965</pmid><doi>10.1109/TUFFC.2022.3176926</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5236-7467</orcidid><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0000-0002-8569-8975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-07, Vol.69 (7), p.2339-2351 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_2668221403 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Arrays Artificial neural networks Calibration Computer architecture Computer simulation Cracks Data analysis Deep learning defect characterization Defects Domains Finite element method Flaw detection Human performance Inspection Monte Carlo simulation neural networks Nondestructive testing out-of-distribution (OOD) detection plane wave imaging (PWI) Plane waves simulation Surface cracks Training Training data Ultrasonic testing ultrasound Uncertainty uncertainty estimation |
title | Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Quantification%20for%20Deep%20Learning%20in%20Ultrasonic%20Crack%20Characterization&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Pyle,%20Richard%20J.&rft.date=2022-07-01&rft.volume=69&rft.issue=7&rft.spage=2339&rft.epage=2351&rft.pages=2339-2351&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2022.3176926&rft_dat=%3Cproquest_RIE%3E2668221403%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682916357&rft_id=info:pmid/35604965&rft_ieee_id=9779747&rfr_iscdi=true |