Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling
A steady state cross‐shelf density gradient of a wind‐free coastal ocean undergoing winter time cooling is found for cooling and geometries which do not vary in the along‐shelf direction. The steady state cross‐shelf density gradient exists even when the average density of the water continues to inc...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2001-02, Vol.106 (C2), p.2589-2604 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2604 |
---|---|
container_issue | C2 |
container_start_page | 2589 |
container_title | Journal of Geophysical Research |
container_volume | 106 |
creator | Pringle, James M. |
description | A steady state cross‐shelf density gradient of a wind‐free coastal ocean undergoing winter time cooling is found for cooling and geometries which do not vary in the along‐shelf direction. The steady state cross‐shelf density gradient exists even when the average density of the water continues to increase. The steady state density gradient can be attained in less than a winter for parameters appropriate to the mid‐Atlantic Bight. The cross‐shelf eddy‐driven buoyancy fluxes which cause this steady state gradient are found to depend critically on bottom friction and bottom slope, and the coastal polyna solutions of Chapman and Gawarkiewicz [1997] are significantly modified by this dependence in the limit of polynas with a large alongshore extent. Bottom friction retards the cross‐shelf propagation of eddies, so that the buoyancy transport is no longer carried by self‐advecting eddy pairs but mixed across the shelf by interacting eddies. The eddy interaction changes the length scale of the eddies until it is the lesser of the Rhines arrest scale or an analogous frictional arrest scale. The estimates of the steady state cross‐shelf density gradient are found to compare well with numerical model results. |
doi_str_mv | 10.1029/2000JC900148 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26680975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26680975</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4234-efaa039565cc381b96962c9a108949a968bd85fc74bb527cd2e68a6913a333403</originalsourceid><addsrcrecordid>eNqNkUtrFEEUhQtRcEiy8wcUCOLCTm49uh5LaXRMSBTia-GiuFNdnZT2dE-qeojz71PNhJBVdHXh8J1zufcQ8orBMQNuTzgAnDUWgEnzjCw4q1XFOfDnZDFLFXCuX5KjnH8XEGStJLAF-dWkMecqX4e-o6Ftd_Q64ESnhEPejGmicaBIb-PQVl0KgfoR84Q9HX3AgW6HNqSrMQ5XMzKFRKe4nqGxL9ohedFhn8PR_Twg3z9--NZ8qs6_LE-b9-cVSi5kFTpEELZWtffCsJVVVnFvkYGx0qJVZtWauvNarlY1177lQRlUlgkUQkgQB-TNPneTxpttyJNbx-xD3-MQxm12XCkDVtcFfPskyCyzZTcD-89MZqQ1xvL_AIXQTLICvtuDfv54Cp3bpLjGtHMM3Nyge9xgwV_f52L22HelEB_zg6dslnY-ne-p29iH3ZOJ7mx52RipZTFVe1PMU_j7YML0xyktdO1-fl66r0L8uNCXF64RdzFVtf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18337141</pqid></control><display><type>article</type><title>Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Pringle, James M.</creator><creatorcontrib>Pringle, James M.</creatorcontrib><description>A steady state cross‐shelf density gradient of a wind‐free coastal ocean undergoing winter time cooling is found for cooling and geometries which do not vary in the along‐shelf direction. The steady state cross‐shelf density gradient exists even when the average density of the water continues to increase. The steady state density gradient can be attained in less than a winter for parameters appropriate to the mid‐Atlantic Bight. The cross‐shelf eddy‐driven buoyancy fluxes which cause this steady state gradient are found to depend critically on bottom friction and bottom slope, and the coastal polyna solutions of Chapman and Gawarkiewicz [1997] are significantly modified by this dependence in the limit of polynas with a large alongshore extent. Bottom friction retards the cross‐shelf propagation of eddies, so that the buoyancy transport is no longer carried by self‐advecting eddy pairs but mixed across the shelf by interacting eddies. The eddy interaction changes the length scale of the eddies until it is the lesser of the Rhines arrest scale or an analogous frictional arrest scale. The estimates of the steady state cross‐shelf density gradient are found to compare well with numerical model results.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2000JC900148</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Dynamics of the ocean (upper and deep oceans) ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Physics of the oceans</subject><ispartof>Journal of Geophysical Research, 2001-02, Vol.106 (C2), p.2589-2604</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4234-efaa039565cc381b96962c9a108949a968bd85fc74bb527cd2e68a6913a333403</citedby><cites>FETCH-LOGICAL-a4234-efaa039565cc381b96962c9a108949a968bd85fc74bb527cd2e68a6913a333403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2000JC900148$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2000JC900148$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46388,46447,46812,46871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=923490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pringle, James M.</creatorcontrib><title>Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>A steady state cross‐shelf density gradient of a wind‐free coastal ocean undergoing winter time cooling is found for cooling and geometries which do not vary in the along‐shelf direction. The steady state cross‐shelf density gradient exists even when the average density of the water continues to increase. The steady state density gradient can be attained in less than a winter for parameters appropriate to the mid‐Atlantic Bight. The cross‐shelf eddy‐driven buoyancy fluxes which cause this steady state gradient are found to depend critically on bottom friction and bottom slope, and the coastal polyna solutions of Chapman and Gawarkiewicz [1997] are significantly modified by this dependence in the limit of polynas with a large alongshore extent. Bottom friction retards the cross‐shelf propagation of eddies, so that the buoyancy transport is no longer carried by self‐advecting eddy pairs but mixed across the shelf by interacting eddies. The eddy interaction changes the length scale of the eddies until it is the lesser of the Rhines arrest scale or an analogous frictional arrest scale. The estimates of the steady state cross‐shelf density gradient are found to compare well with numerical model results.</description><subject>Dynamics of the ocean (upper and deep oceans)</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Physics of the oceans</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkUtrFEEUhQtRcEiy8wcUCOLCTm49uh5LaXRMSBTia-GiuFNdnZT2dE-qeojz71PNhJBVdHXh8J1zufcQ8orBMQNuTzgAnDUWgEnzjCw4q1XFOfDnZDFLFXCuX5KjnH8XEGStJLAF-dWkMecqX4e-o6Ftd_Q64ESnhEPejGmicaBIb-PQVl0KgfoR84Q9HX3AgW6HNqSrMQ5XMzKFRKe4nqGxL9ohedFhn8PR_Twg3z9--NZ8qs6_LE-b9-cVSi5kFTpEELZWtffCsJVVVnFvkYGx0qJVZtWauvNarlY1177lQRlUlgkUQkgQB-TNPneTxpttyJNbx-xD3-MQxm12XCkDVtcFfPskyCyzZTcD-89MZqQ1xvL_AIXQTLICvtuDfv54Cp3bpLjGtHMM3Nyge9xgwV_f52L22HelEB_zg6dslnY-ne-p29iH3ZOJ7mx52RipZTFVe1PMU_j7YML0xyktdO1-fl66r0L8uNCXF64RdzFVtf8</recordid><startdate>20010215</startdate><enddate>20010215</enddate><creator>Pringle, James M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20010215</creationdate><title>Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling</title><author>Pringle, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4234-efaa039565cc381b96962c9a108949a968bd85fc74bb527cd2e68a6913a333403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Dynamics of the ocean (upper and deep oceans)</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Physics of the oceans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pringle, James M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pringle, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2001-02-15</date><risdate>2001</risdate><volume>106</volume><issue>C2</issue><spage>2589</spage><epage>2604</epage><pages>2589-2604</pages><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>A steady state cross‐shelf density gradient of a wind‐free coastal ocean undergoing winter time cooling is found for cooling and geometries which do not vary in the along‐shelf direction. The steady state cross‐shelf density gradient exists even when the average density of the water continues to increase. The steady state density gradient can be attained in less than a winter for parameters appropriate to the mid‐Atlantic Bight. The cross‐shelf eddy‐driven buoyancy fluxes which cause this steady state gradient are found to depend critically on bottom friction and bottom slope, and the coastal polyna solutions of Chapman and Gawarkiewicz [1997] are significantly modified by this dependence in the limit of polynas with a large alongshore extent. Bottom friction retards the cross‐shelf propagation of eddies, so that the buoyancy transport is no longer carried by self‐advecting eddy pairs but mixed across the shelf by interacting eddies. The eddy interaction changes the length scale of the eddies until it is the lesser of the Rhines arrest scale or an analogous frictional arrest scale. The estimates of the steady state cross‐shelf density gradient are found to compare well with numerical model results.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2000JC900148</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2001-02, Vol.106 (C2), p.2589-2604 |
issn | 0148-0227 2169-9275 2156-2202 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_26680975 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection |
subjects | Dynamics of the ocean (upper and deep oceans) Earth, ocean, space Exact sciences and technology External geophysics Marine Physics of the oceans |
title | Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-shelf%20eddy%20heat%20transport%20in%20a%20wind-free%20coastal%20ocean%20undergoing%20winter%20time%20cooling&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Pringle,%20James%20M.&rft.date=2001-02-15&rft.volume=106&rft.issue=C2&rft.spage=2589&rft.epage=2604&rft.pages=2589-2604&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2000JC900148&rft_dat=%3Cproquest_cross%3E26680975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18337141&rft_id=info:pmid/&rfr_iscdi=true |