Numerical integration of the time-dependent Schrödinger equation for laser-driven helium
The full time-dependent Schrödinger equation for 2-electron atoms in intense laser fields is solved using a mixed finite-difference/basis set approach. We discuss Krylov subspace techniques for the propagation of the equation in time, and numerical methods for optimizing the description of the syste...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 1998-11, Vol.114 (1), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Computer physics communications |
container_volume | 114 |
creator | Smyth, Edward S. Parker, Jonathan S. Taylor, K.T. |
description | The full time-dependent Schrödinger equation for 2-electron atoms in intense laser fields is solved using a mixed finite-difference/basis set approach. We discuss Krylov subspace techniques for the propagation of the equation in time, and numerical methods for optimizing the description of the system on a finite-difference lattice. We describe the implementation of a parallelized code based on these numerical methods, and review performance and scaling results of the code on the Cray T3D/E. |
doi_str_mv | 10.1016/S0010-4655(98)00083-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26680889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465598000836</els_id><sourcerecordid>26680889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-4814415596ae5e776438936678df9a0bbaa778f56d7891f40f1d2320d72606dd3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIMxKdBFNZjK5rESKNyi6qC5chTQ500bm0iaZgi_mC_hiTq24dXU23__B-RA6peSSEsqvZoRQghkvy3MlLwghssB8D42oFArnirF9NPpDDtFRjO8DJIQqRujtqW8geGvqzLcJFsEk37VZV2VpCVnyDWAHK2gdtCmb2WX4-nS-XUDIYN3v2KoLWW0iBOyC30CbLaH2fXOMDipTRzj5vWP0enf7MnnA0-f7x8nNFFtW8oSZpIzRslTcQAlCcFZIVXAupKuUIfO5MULIquROSEUrRirq8iInTuSccOeKMTrbeVehW_cQk258tFDXpoWujzrnXBI5OMeo3IE2dDEGqPQq-MaED02J3obUPyH1tpJWUv-E1HzYXe92MHyx8RB0tB5aC84HsEm7zv9j-AY_wnuF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26680889</pqid></control><display><type>article</type><title>Numerical integration of the time-dependent Schrödinger equation for laser-driven helium</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Smyth, Edward S. ; Parker, Jonathan S. ; Taylor, K.T.</creator><creatorcontrib>Smyth, Edward S. ; Parker, Jonathan S. ; Taylor, K.T.</creatorcontrib><description>The full time-dependent Schrödinger equation for 2-electron atoms in intense laser fields is solved using a mixed finite-difference/basis set approach. We discuss Krylov subspace techniques for the propagation of the equation in time, and numerical methods for optimizing the description of the system on a finite-difference lattice. We describe the implementation of a parallelized code based on these numerical methods, and review performance and scaling results of the code on the Cray T3D/E.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(98)00083-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>02.60.Lj ; 31.15.Fx ; 31.70.Hq ; 32.80.Fb ; Finite-difference ; Krylov subspace ; Multiphoton processes ; Time-dependent Schrödinger equation</subject><ispartof>Computer physics communications, 1998-11, Vol.114 (1), p.1-14</ispartof><rights>1998 Elsevier Science B.V.All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-4814415596ae5e776438936678df9a0bbaa778f56d7891f40f1d2320d72606dd3</citedby><cites>FETCH-LOGICAL-c456t-4814415596ae5e776438936678df9a0bbaa778f56d7891f40f1d2320d72606dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465598000836$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Smyth, Edward S.</creatorcontrib><creatorcontrib>Parker, Jonathan S.</creatorcontrib><creatorcontrib>Taylor, K.T.</creatorcontrib><title>Numerical integration of the time-dependent Schrödinger equation for laser-driven helium</title><title>Computer physics communications</title><description>The full time-dependent Schrödinger equation for 2-electron atoms in intense laser fields is solved using a mixed finite-difference/basis set approach. We discuss Krylov subspace techniques for the propagation of the equation in time, and numerical methods for optimizing the description of the system on a finite-difference lattice. We describe the implementation of a parallelized code based on these numerical methods, and review performance and scaling results of the code on the Cray T3D/E.</description><subject>02.60.Lj</subject><subject>31.15.Fx</subject><subject>31.70.Hq</subject><subject>32.80.Fb</subject><subject>Finite-difference</subject><subject>Krylov subspace</subject><subject>Multiphoton processes</subject><subject>Time-dependent Schrödinger equation</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIMxKdBFNZjK5rESKNyi6qC5chTQ500bm0iaZgi_mC_hiTq24dXU23__B-RA6peSSEsqvZoRQghkvy3MlLwghssB8D42oFArnirF9NPpDDtFRjO8DJIQqRujtqW8geGvqzLcJFsEk37VZV2VpCVnyDWAHK2gdtCmb2WX4-nS-XUDIYN3v2KoLWW0iBOyC30CbLaH2fXOMDipTRzj5vWP0enf7MnnA0-f7x8nNFFtW8oSZpIzRslTcQAlCcFZIVXAupKuUIfO5MULIquROSEUrRirq8iInTuSccOeKMTrbeVehW_cQk258tFDXpoWujzrnXBI5OMeo3IE2dDEGqPQq-MaED02J3obUPyH1tpJWUv-E1HzYXe92MHyx8RB0tB5aC84HsEm7zv9j-AY_wnuF</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Smyth, Edward S.</creator><creator>Parker, Jonathan S.</creator><creator>Taylor, K.T.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981101</creationdate><title>Numerical integration of the time-dependent Schrödinger equation for laser-driven helium</title><author>Smyth, Edward S. ; Parker, Jonathan S. ; Taylor, K.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-4814415596ae5e776438936678df9a0bbaa778f56d7891f40f1d2320d72606dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>02.60.Lj</topic><topic>31.15.Fx</topic><topic>31.70.Hq</topic><topic>32.80.Fb</topic><topic>Finite-difference</topic><topic>Krylov subspace</topic><topic>Multiphoton processes</topic><topic>Time-dependent Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smyth, Edward S.</creatorcontrib><creatorcontrib>Parker, Jonathan S.</creatorcontrib><creatorcontrib>Taylor, K.T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smyth, Edward S.</au><au>Parker, Jonathan S.</au><au>Taylor, K.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical integration of the time-dependent Schrödinger equation for laser-driven helium</atitle><jtitle>Computer physics communications</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>114</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>The full time-dependent Schrödinger equation for 2-electron atoms in intense laser fields is solved using a mixed finite-difference/basis set approach. We discuss Krylov subspace techniques for the propagation of the equation in time, and numerical methods for optimizing the description of the system on a finite-difference lattice. We describe the implementation of a parallelized code based on these numerical methods, and review performance and scaling results of the code on the Cray T3D/E.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(98)00083-6</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 1998-11, Vol.114 (1), p.1-14 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_26680889 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 02.60.Lj 31.15.Fx 31.70.Hq 32.80.Fb Finite-difference Krylov subspace Multiphoton processes Time-dependent Schrödinger equation |
title | Numerical integration of the time-dependent Schrödinger equation for laser-driven helium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20integration%20of%20the%20time-dependent%20Schr%C3%B6dinger%20equation%20for%20laser-driven%20helium&rft.jtitle=Computer%20physics%20communications&rft.au=Smyth,%20Edward%20S.&rft.date=1998-11-01&rft.volume=114&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/S0010-4655(98)00083-6&rft_dat=%3Cproquest_cross%3E26680889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26680889&rft_id=info:pmid/&rft_els_id=S0010465598000836&rfr_iscdi=true |