Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels

Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear visc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2015-05, Vol.4 (5), p.538-542
Hauptverfasser: McAllister, John W, Lott, Joseph R, Schmidt, Peter W, Sammler, Robert L, Bates, Frank S, Lodge, Timothy P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 5
container_start_page 538
container_title ACS macro letters
container_volume 4
creator McAllister, John W
Lott, Joseph R
Schmidt, Peter W
Sammler, Robert L
Bates, Frank S
Lodge, Timothy P
description Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.
doi_str_mv 10.1021/acsmacrolett.5b00150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2667789264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667789264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</originalsourceid><addsrcrecordid>eNp9kF1PwyAUhonRODP3D4zppTedHKC0vdTFOZP5EaPXhFK6daFlQmuyfy9Lp9mV3HBO8rwHzoPQFeApYAK3UvlGKmeN7rppUmAMCT5BFwQ4xMATenpUj9DE-w0OJ-GQ5ewcjWiS5JxidoHelnWrpYtkW0YvtjVD977W1thVraSJ7vVaftfWRbaK5nXhamMC8ay79c4obUxvrNfRYlc6u9LGX6KzShqvJ4d7jD7nDx-zRbx8fXya3S1jyYB1sQQGNNNVDiynacJyBamCLFVYYZylkAMlumRVVmJKU1IokmQFpRWXkjMSyjG6GeZunf3qte9EU_v9f2Srbe8F4TxNs5xwFlA2oEGY905XYuvqRrqdACz2OsWxTnHQGWLXhxf6otHlX-hXXgDwAIS42NjetWHh_2f-AHyYg_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667789264</pqid></control><display><type>article</type><title>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</title><source>American Chemical Society Journals</source><creator>McAllister, John W ; Lott, Joseph R ; Schmidt, Peter W ; Sammler, Robert L ; Bates, Frank S ; Lodge, Timothy P</creator><creatorcontrib>McAllister, John W ; Lott, Joseph R ; Schmidt, Peter W ; Sammler, Robert L ; Bates, Frank S ; Lodge, Timothy P</creatorcontrib><description>Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/acsmacrolett.5b00150</identifier><identifier>PMID: 35596304</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS macro letters, 2015-05, Vol.4 (5), p.538-542</ispartof><rights>Copyright © American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</citedby><cites>FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmacrolett.5b00150$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmacrolett.5b00150$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35596304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McAllister, John W</creatorcontrib><creatorcontrib>Lott, Joseph R</creatorcontrib><creatorcontrib>Schmidt, Peter W</creatorcontrib><creatorcontrib>Sammler, Robert L</creatorcontrib><creatorcontrib>Bates, Frank S</creatorcontrib><creatorcontrib>Lodge, Timothy P</creatorcontrib><title>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.</description><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kF1PwyAUhonRODP3D4zppTedHKC0vdTFOZP5EaPXhFK6daFlQmuyfy9Lp9mV3HBO8rwHzoPQFeApYAK3UvlGKmeN7rppUmAMCT5BFwQ4xMATenpUj9DE-w0OJ-GQ5ewcjWiS5JxidoHelnWrpYtkW0YvtjVD977W1thVraSJ7vVaftfWRbaK5nXhamMC8ay79c4obUxvrNfRYlc6u9LGX6KzShqvJ4d7jD7nDx-zRbx8fXya3S1jyYB1sQQGNNNVDiynacJyBamCLFVYYZylkAMlumRVVmJKU1IokmQFpRWXkjMSyjG6GeZunf3qte9EU_v9f2Srbe8F4TxNs5xwFlA2oEGY905XYuvqRrqdACz2OsWxTnHQGWLXhxf6otHlX-hXXgDwAIS42NjetWHh_2f-AHyYg_k</recordid><startdate>20150519</startdate><enddate>20150519</enddate><creator>McAllister, John W</creator><creator>Lott, Joseph R</creator><creator>Schmidt, Peter W</creator><creator>Sammler, Robert L</creator><creator>Bates, Frank S</creator><creator>Lodge, Timothy P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150519</creationdate><title>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</title><author>McAllister, John W ; Lott, Joseph R ; Schmidt, Peter W ; Sammler, Robert L ; Bates, Frank S ; Lodge, Timothy P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>McAllister, John W</creatorcontrib><creatorcontrib>Lott, Joseph R</creatorcontrib><creatorcontrib>Schmidt, Peter W</creatorcontrib><creatorcontrib>Sammler, Robert L</creatorcontrib><creatorcontrib>Bates, Frank S</creatorcontrib><creatorcontrib>Lodge, Timothy P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAllister, John W</au><au>Lott, Joseph R</au><au>Schmidt, Peter W</au><au>Sammler, Robert L</au><au>Bates, Frank S</au><au>Lodge, Timothy P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2015-05-19</date><risdate>2015</risdate><volume>4</volume><issue>5</issue><spage>538</spage><epage>542</epage><pages>538-542</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35596304</pmid><doi>10.1021/acsmacrolett.5b00150</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2161-1653
ispartof ACS macro letters, 2015-05, Vol.4 (5), p.538-542
issn 2161-1653
2161-1653
language eng
recordid cdi_proquest_miscellaneous_2667789264
source American Chemical Society Journals
title Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20Nonlinear%20Rheological%20Behavior%20of%20Fibrillar%20Methylcellulose%20Hydrogels&rft.jtitle=ACS%20macro%20letters&rft.au=McAllister,%20John%20W&rft.date=2015-05-19&rft.volume=4&rft.issue=5&rft.spage=538&rft.epage=542&rft.pages=538-542&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/acsmacrolett.5b00150&rft_dat=%3Cproquest_cross%3E2667789264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667789264&rft_id=info:pmid/35596304&rfr_iscdi=true