Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels
Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear visc...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2015-05, Vol.4 (5), p.538-542 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 5 |
container_start_page | 538 |
container_title | ACS macro letters |
container_volume | 4 |
creator | McAllister, John W Lott, Joseph R Schmidt, Peter W Sammler, Robert L Bates, Frank S Lodge, Timothy P |
description | Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model. |
doi_str_mv | 10.1021/acsmacrolett.5b00150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2667789264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667789264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</originalsourceid><addsrcrecordid>eNp9kF1PwyAUhonRODP3D4zppTedHKC0vdTFOZP5EaPXhFK6daFlQmuyfy9Lp9mV3HBO8rwHzoPQFeApYAK3UvlGKmeN7rppUmAMCT5BFwQ4xMATenpUj9DE-w0OJ-GQ5ewcjWiS5JxidoHelnWrpYtkW0YvtjVD977W1thVraSJ7vVaftfWRbaK5nXhamMC8ay79c4obUxvrNfRYlc6u9LGX6KzShqvJ4d7jD7nDx-zRbx8fXya3S1jyYB1sQQGNNNVDiynacJyBamCLFVYYZylkAMlumRVVmJKU1IokmQFpRWXkjMSyjG6GeZunf3qte9EU_v9f2Srbe8F4TxNs5xwFlA2oEGY905XYuvqRrqdACz2OsWxTnHQGWLXhxf6otHlX-hXXgDwAIS42NjetWHh_2f-AHyYg_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667789264</pqid></control><display><type>article</type><title>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</title><source>American Chemical Society Journals</source><creator>McAllister, John W ; Lott, Joseph R ; Schmidt, Peter W ; Sammler, Robert L ; Bates, Frank S ; Lodge, Timothy P</creator><creatorcontrib>McAllister, John W ; Lott, Joseph R ; Schmidt, Peter W ; Sammler, Robert L ; Bates, Frank S ; Lodge, Timothy P</creatorcontrib><description>Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/acsmacrolett.5b00150</identifier><identifier>PMID: 35596304</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS macro letters, 2015-05, Vol.4 (5), p.538-542</ispartof><rights>Copyright © American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</citedby><cites>FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmacrolett.5b00150$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmacrolett.5b00150$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35596304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McAllister, John W</creatorcontrib><creatorcontrib>Lott, Joseph R</creatorcontrib><creatorcontrib>Schmidt, Peter W</creatorcontrib><creatorcontrib>Sammler, Robert L</creatorcontrib><creatorcontrib>Bates, Frank S</creatorcontrib><creatorcontrib>Lodge, Timothy P</creatorcontrib><title>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.</description><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kF1PwyAUhonRODP3D4zppTedHKC0vdTFOZP5EaPXhFK6daFlQmuyfy9Lp9mV3HBO8rwHzoPQFeApYAK3UvlGKmeN7rppUmAMCT5BFwQ4xMATenpUj9DE-w0OJ-GQ5ewcjWiS5JxidoHelnWrpYtkW0YvtjVD977W1thVraSJ7vVaftfWRbaK5nXhamMC8ay79c4obUxvrNfRYlc6u9LGX6KzShqvJ4d7jD7nDx-zRbx8fXya3S1jyYB1sQQGNNNVDiynacJyBamCLFVYYZylkAMlumRVVmJKU1IokmQFpRWXkjMSyjG6GeZunf3qte9EU_v9f2Srbe8F4TxNs5xwFlA2oEGY905XYuvqRrqdACz2OsWxTnHQGWLXhxf6otHlX-hXXgDwAIS42NjetWHh_2f-AHyYg_k</recordid><startdate>20150519</startdate><enddate>20150519</enddate><creator>McAllister, John W</creator><creator>Lott, Joseph R</creator><creator>Schmidt, Peter W</creator><creator>Sammler, Robert L</creator><creator>Bates, Frank S</creator><creator>Lodge, Timothy P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150519</creationdate><title>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</title><author>McAllister, John W ; Lott, Joseph R ; Schmidt, Peter W ; Sammler, Robert L ; Bates, Frank S ; Lodge, Timothy P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-a14138ef914937549c17c187c0c008719132ed4f8d03372bc258b33f6aa6428b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>McAllister, John W</creatorcontrib><creatorcontrib>Lott, Joseph R</creatorcontrib><creatorcontrib>Schmidt, Peter W</creatorcontrib><creatorcontrib>Sammler, Robert L</creatorcontrib><creatorcontrib>Bates, Frank S</creatorcontrib><creatorcontrib>Lodge, Timothy P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAllister, John W</au><au>Lott, Joseph R</au><au>Schmidt, Peter W</au><au>Sammler, Robert L</au><au>Bates, Frank S</au><au>Lodge, Timothy P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2015-05-19</date><risdate>2015</risdate><volume>4</volume><issue>5</issue><spage>538</spage><epage>542</epage><pages>538-542</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>Cryogenic transmission electron microscopy and small-angle neutron scattering recently have revealed that the well-known thermoreversible gelation of methylcellulose (MC) in water is due to the formation of fibrils, with a diameter of 15 ± 2 nm. Here we report that both the linear and nonlinear viscoelastic response of MC solutions and gels can be described by a filament-based mechanical model. In particular, large-amplitude oscillatory shear experiments show that aqueous MC materials transition from shear thinning to shear thickening behavior at the gelation temperature. The critical stress at which MC gels depart from the linear viscoelastic regime and begin to stiffen is well predicted from the filament model over a concentration range of 0.18–2.0 wt %. These predictions are based on fibril densities and persistence lengths obtained experimentally from neutron scattering, combined with cross-link spacings inferred from the gel modulus via the same model.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35596304</pmid><doi>10.1021/acsmacrolett.5b00150</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-1653 |
ispartof | ACS macro letters, 2015-05, Vol.4 (5), p.538-542 |
issn | 2161-1653 2161-1653 |
language | eng |
recordid | cdi_proquest_miscellaneous_2667789264 |
source | American Chemical Society Journals |
title | Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20Nonlinear%20Rheological%20Behavior%20of%20Fibrillar%20Methylcellulose%20Hydrogels&rft.jtitle=ACS%20macro%20letters&rft.au=McAllister,%20John%20W&rft.date=2015-05-19&rft.volume=4&rft.issue=5&rft.spage=538&rft.epage=542&rft.pages=538-542&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/acsmacrolett.5b00150&rft_dat=%3Cproquest_cross%3E2667789264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667789264&rft_id=info:pmid/35596304&rfr_iscdi=true |