Carbon monoxide poisoning of proton exchange membrane fuel cells

Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2001-06, Vol.25 (8), p.695-713
Hauptverfasser: Baschuk, J. J., Li, Xianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 8
container_start_page 695
container_title International journal of energy research
container_volume 25
creator Baschuk, J. J.
Li, Xianguo
description Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/er.713
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26674032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26674032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4503-909142f893195f438ca5d5784e754e1d66a05b1f588246101a6953fb66de512f3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFb9DQFB8JC6m_3K3pRQq1IU_KDFy7JJZms0ydbdFtt_b0qlnjzNYR6eeedF6JTgAcE4uQQ_kITuoR7BSsWEsOk-6mEqaKywnB6ioxA-MO52RPbQVWZ87tqoca1bVSVEc1cF11btLHI2mnu36JawKt5NO4OogSb3poXILqGOCqjrcIwOrKkDnPzOPnq9Gb5kt_H4cXSXXY_jgnG8Oa0IS2yqKFHcMpoWhpdcpgwkZ0BKIQzmObE8TRMmCCZGKE5tLkQJnCSW9tH51ttl-lpCWOimCpsEXRy3DDoRQjJMkz-w8C4ED1bPfdUYv9YE601BGrzuCurAs1-jCYWpbfdYUYUdrZQUnHXUxZb6rmpY_-PSw6etMd6yVVjAasca_6mFpJLrycNI45G6f8uyZz2hP2Qhf5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26674032</pqid></control><display><type>article</type><title>Carbon monoxide poisoning of proton exchange membrane fuel cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baschuk, J. J. ; Li, Xianguo</creator><creatorcontrib>Baschuk, J. J. ; Li, Xianguo</creatorcontrib><description>Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.713</identifier><identifier>CODEN: IJERDN</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; carbon monoxide poisoning ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; fuel cell ; Fuel cells ; proton exchange membrane fuel cell</subject><ispartof>International journal of energy research, 2001-06, Vol.25 (8), p.695-713</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Ltd.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4503-909142f893195f438ca5d5784e754e1d66a05b1f588246101a6953fb66de512f3</citedby><cites>FETCH-LOGICAL-c4503-909142f893195f438ca5d5784e754e1d66a05b1f588246101a6953fb66de512f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.713$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.713$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=997654$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baschuk, J. J.</creatorcontrib><creatorcontrib>Li, Xianguo</creatorcontrib><title>Carbon monoxide poisoning of proton exchange membrane fuel cells</title><title>International journal of energy research</title><addtitle>Int. J. Energy Res</addtitle><description>Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>carbon monoxide poisoning</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>fuel cell</subject><subject>Fuel cells</subject><subject>proton exchange membrane fuel cell</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFb9DQFB8JC6m_3K3pRQq1IU_KDFy7JJZms0ydbdFtt_b0qlnjzNYR6eeedF6JTgAcE4uQQ_kITuoR7BSsWEsOk-6mEqaKywnB6ioxA-MO52RPbQVWZ87tqoca1bVSVEc1cF11btLHI2mnu36JawKt5NO4OogSb3poXILqGOCqjrcIwOrKkDnPzOPnq9Gb5kt_H4cXSXXY_jgnG8Oa0IS2yqKFHcMpoWhpdcpgwkZ0BKIQzmObE8TRMmCCZGKE5tLkQJnCSW9tH51ttl-lpCWOimCpsEXRy3DDoRQjJMkz-w8C4ED1bPfdUYv9YE601BGrzuCurAs1-jCYWpbfdYUYUdrZQUnHXUxZb6rmpY_-PSw6etMd6yVVjAasca_6mFpJLrycNI45G6f8uyZz2hP2Qhf5M</recordid><startdate>20010625</startdate><enddate>20010625</enddate><creator>Baschuk, J. J.</creator><creator>Li, Xianguo</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010625</creationdate><title>Carbon monoxide poisoning of proton exchange membrane fuel cells</title><author>Baschuk, J. J. ; Li, Xianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4503-909142f893195f438ca5d5784e754e1d66a05b1f588246101a6953fb66de512f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>carbon monoxide poisoning</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>fuel cell</topic><topic>Fuel cells</topic><topic>proton exchange membrane fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baschuk, J. J.</creatorcontrib><creatorcontrib>Li, Xianguo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baschuk, J. J.</au><au>Li, Xianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon monoxide poisoning of proton exchange membrane fuel cells</atitle><jtitle>International journal of energy research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2001-06-25</date><risdate>2001</risdate><volume>25</volume><issue>8</issue><spage>695</spage><epage>713</epage><pages>695-713</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><coden>IJERDN</coden><abstract>Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/er.713</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2001-06, Vol.25 (8), p.695-713
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_miscellaneous_26674032
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
carbon monoxide poisoning
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
fuel cell
Fuel cells
proton exchange membrane fuel cell
title Carbon monoxide poisoning of proton exchange membrane fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20monoxide%20poisoning%20of%20proton%20exchange%20membrane%20fuel%20cells&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Baschuk,%20J.%20J.&rft.date=2001-06-25&rft.volume=25&rft.issue=8&rft.spage=695&rft.epage=713&rft.pages=695-713&rft.issn=0363-907X&rft.eissn=1099-114X&rft.coden=IJERDN&rft_id=info:doi/10.1002/er.713&rft_dat=%3Cproquest_cross%3E26674032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26674032&rft_id=info:pmid/&rfr_iscdi=true