Combination of constraint systems II: Rational amalgamation

In two earlier papers (Baader, Schulz, in: U. Montanari, F. Rossi (Eds.), Proc. CP’95 Springer Lecture Notes in Computer Science, vol. 976, Springer, Berlin, pp. 380–397; Theoret. Comput. Sci 192 (1998) 107–161), the concept of “free amalgamation” has been introduced as a general methodology for int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2001-09, Vol.266 (1), p.113-157
Hauptverfasser: Schulz, Klaus U., Kepser, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 1
container_start_page 113
container_title Theoretical computer science
container_volume 266
creator Schulz, Klaus U.
Kepser, Stephan
description In two earlier papers (Baader, Schulz, in: U. Montanari, F. Rossi (Eds.), Proc. CP’95 Springer Lecture Notes in Computer Science, vol. 976, Springer, Berlin, pp. 380–397; Theoret. Comput. Sci 192 (1998) 107–161), the concept of “free amalgamation” has been introduced as a general methodology for interweaving solution structures for symbolic constraints, and it was shown how constraint solvers for two components can be lifted to a constraint solver for the free amalgam. Here we discuss a second general way for combining solution domains, called rational amalgamation. In praxis, rational amalgamation seems to be the preferred combination principle if the two solution structures to be combined are “rational” or “non-wellfounded” domains. It represents, e.g., the way how rational trees and rational lists are interwoven in the solution domain of Prolog III, and a variant has been used by W. Rounds for combining feature structures and hereditarily finite non-wellfounded sets. We show that rational amalgamation is a general combination principle, applicable to a large class of structures. As in the case of free amalgamation, constraint solvers for two component structures can be combined to a constraint solver for their rational amalgam. From this algorithmic point of view, rational amalgamation seems to be interesting since the combination technique for rational amalgamation avoids one source of non-determinism that is needed in the corresponding scheme for free amalgamation.
doi_str_mv 10.1016/S0304-3975(00)00164-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26673397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439750000164X</els_id><sourcerecordid>26673397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7d56e273791f79a60b765a35a9539d437288f6ccc1014ed1dd2ef2b26bb9ca773</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfG3S6EGk-FEoCH5AbyGbzUpkd6OZrdB_b7YtenQOM8zwzAzvi9AxwRcEE3H5ghnmOVOyOMP4HKcRzxc7aEQmUuWUKr6LRr_IPjoA-MApCilG6Hoa2tJ3pvehy0Kd2dBBH43v-gxW0LsWstnsKnteA6bJTGua95SG9hDt1aYBd7StY_R2f_c6fcznTw-z6e08t0ywPpdVIRyVTCpSS2UELqUoDCuMKpiqOJN0MqmFtTaJ4a4iVUVdTUsqylJZIyUbo9PN3c8YvpYOet16sK5pTOfCEjQVQrKkLYHFBrQxAERX68_oWxNXmmA9WKXXVunBB42xXlulF2nvZPvAgDVNHU1nPfwtcywJ58P9mw3nktpv76IG611nXeWjs72ugv_n0w_uLn0P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26673397</pqid></control><display><type>article</type><title>Combination of constraint systems II: Rational amalgamation</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schulz, Klaus U. ; Kepser, Stephan</creator><creatorcontrib>Schulz, Klaus U. ; Kepser, Stephan</creatorcontrib><description>In two earlier papers (Baader, Schulz, in: U. Montanari, F. Rossi (Eds.), Proc. CP’95 Springer Lecture Notes in Computer Science, vol. 976, Springer, Berlin, pp. 380–397; Theoret. Comput. Sci 192 (1998) 107–161), the concept of “free amalgamation” has been introduced as a general methodology for interweaving solution structures for symbolic constraints, and it was shown how constraint solvers for two components can be lifted to a constraint solver for the free amalgam. Here we discuss a second general way for combining solution domains, called rational amalgamation. In praxis, rational amalgamation seems to be the preferred combination principle if the two solution structures to be combined are “rational” or “non-wellfounded” domains. It represents, e.g., the way how rational trees and rational lists are interwoven in the solution domain of Prolog III, and a variant has been used by W. Rounds for combining feature structures and hereditarily finite non-wellfounded sets. We show that rational amalgamation is a general combination principle, applicable to a large class of structures. As in the case of free amalgamation, constraint solvers for two component structures can be combined to a constraint solver for their rational amalgam. From this algorithmic point of view, rational amalgamation seems to be interesting since the combination technique for rational amalgamation avoids one source of non-determinism that is needed in the corresponding scheme for free amalgamation.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00164-X</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Combination ; Constraint solving ; Exact sciences and technology ; General algebraic systems ; Logic and foundations ; Mathematical logic, foundations, set theory ; Mathematics ; Model theory ; Sciences and techniques of general use ; Unification ; Universal algebra</subject><ispartof>Theoretical computer science, 2001-09, Vol.266 (1), p.113-157</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-7d56e273791f79a60b765a35a9539d437288f6ccc1014ed1dd2ef2b26bb9ca773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030439750000164X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14071447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schulz, Klaus U.</creatorcontrib><creatorcontrib>Kepser, Stephan</creatorcontrib><title>Combination of constraint systems II: Rational amalgamation</title><title>Theoretical computer science</title><description>In two earlier papers (Baader, Schulz, in: U. Montanari, F. Rossi (Eds.), Proc. CP’95 Springer Lecture Notes in Computer Science, vol. 976, Springer, Berlin, pp. 380–397; Theoret. Comput. Sci 192 (1998) 107–161), the concept of “free amalgamation” has been introduced as a general methodology for interweaving solution structures for symbolic constraints, and it was shown how constraint solvers for two components can be lifted to a constraint solver for the free amalgam. Here we discuss a second general way for combining solution domains, called rational amalgamation. In praxis, rational amalgamation seems to be the preferred combination principle if the two solution structures to be combined are “rational” or “non-wellfounded” domains. It represents, e.g., the way how rational trees and rational lists are interwoven in the solution domain of Prolog III, and a variant has been used by W. Rounds for combining feature structures and hereditarily finite non-wellfounded sets. We show that rational amalgamation is a general combination principle, applicable to a large class of structures. As in the case of free amalgamation, constraint solvers for two component structures can be combined to a constraint solver for their rational amalgam. From this algorithmic point of view, rational amalgamation seems to be interesting since the combination technique for rational amalgamation avoids one source of non-determinism that is needed in the corresponding scheme for free amalgamation.</description><subject>Algebra</subject><subject>Combination</subject><subject>Constraint solving</subject><subject>Exact sciences and technology</subject><subject>General algebraic systems</subject><subject>Logic and foundations</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Model theory</subject><subject>Sciences and techniques of general use</subject><subject>Unification</subject><subject>Universal algebra</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfG3S6EGk-FEoCH5AbyGbzUpkd6OZrdB_b7YtenQOM8zwzAzvi9AxwRcEE3H5ghnmOVOyOMP4HKcRzxc7aEQmUuWUKr6LRr_IPjoA-MApCilG6Hoa2tJ3pvehy0Kd2dBBH43v-gxW0LsWstnsKnteA6bJTGua95SG9hDt1aYBd7StY_R2f_c6fcznTw-z6e08t0ywPpdVIRyVTCpSS2UELqUoDCuMKpiqOJN0MqmFtTaJ4a4iVUVdTUsqylJZIyUbo9PN3c8YvpYOet16sK5pTOfCEjQVQrKkLYHFBrQxAERX68_oWxNXmmA9WKXXVunBB42xXlulF2nvZPvAgDVNHU1nPfwtcywJ58P9mw3nktpv76IG611nXeWjs72ugv_n0w_uLn0P</recordid><startdate>20010906</startdate><enddate>20010906</enddate><creator>Schulz, Klaus U.</creator><creator>Kepser, Stephan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010906</creationdate><title>Combination of constraint systems II: Rational amalgamation</title><author>Schulz, Klaus U. ; Kepser, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7d56e273791f79a60b765a35a9539d437288f6ccc1014ed1dd2ef2b26bb9ca773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebra</topic><topic>Combination</topic><topic>Constraint solving</topic><topic>Exact sciences and technology</topic><topic>General algebraic systems</topic><topic>Logic and foundations</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Model theory</topic><topic>Sciences and techniques of general use</topic><topic>Unification</topic><topic>Universal algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, Klaus U.</creatorcontrib><creatorcontrib>Kepser, Stephan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, Klaus U.</au><au>Kepser, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of constraint systems II: Rational amalgamation</atitle><jtitle>Theoretical computer science</jtitle><date>2001-09-06</date><risdate>2001</risdate><volume>266</volume><issue>1</issue><spage>113</spage><epage>157</epage><pages>113-157</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>In two earlier papers (Baader, Schulz, in: U. Montanari, F. Rossi (Eds.), Proc. CP’95 Springer Lecture Notes in Computer Science, vol. 976, Springer, Berlin, pp. 380–397; Theoret. Comput. Sci 192 (1998) 107–161), the concept of “free amalgamation” has been introduced as a general methodology for interweaving solution structures for symbolic constraints, and it was shown how constraint solvers for two components can be lifted to a constraint solver for the free amalgam. Here we discuss a second general way for combining solution domains, called rational amalgamation. In praxis, rational amalgamation seems to be the preferred combination principle if the two solution structures to be combined are “rational” or “non-wellfounded” domains. It represents, e.g., the way how rational trees and rational lists are interwoven in the solution domain of Prolog III, and a variant has been used by W. Rounds for combining feature structures and hereditarily finite non-wellfounded sets. We show that rational amalgamation is a general combination principle, applicable to a large class of structures. As in the case of free amalgamation, constraint solvers for two component structures can be combined to a constraint solver for their rational amalgam. From this algorithmic point of view, rational amalgamation seems to be interesting since the combination technique for rational amalgamation avoids one source of non-determinism that is needed in the corresponding scheme for free amalgamation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00164-X</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2001-09, Vol.266 (1), p.113-157
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_26673397
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebra
Combination
Constraint solving
Exact sciences and technology
General algebraic systems
Logic and foundations
Mathematical logic, foundations, set theory
Mathematics
Model theory
Sciences and techniques of general use
Unification
Universal algebra
title Combination of constraint systems II: Rational amalgamation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20constraint%20systems%20II:%20Rational%20amalgamation&rft.jtitle=Theoretical%20computer%20science&rft.au=Schulz,%20Klaus%20U.&rft.date=2001-09-06&rft.volume=266&rft.issue=1&rft.spage=113&rft.epage=157&rft.pages=113-157&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/S0304-3975(00)00164-X&rft_dat=%3Cproquest_cross%3E26673397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26673397&rft_id=info:pmid/&rft_els_id=S030439750000164X&rfr_iscdi=true