Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise
Image degradation by blurring is a well-known phenomenon often described by the mathematical operation of convolution. Fourier methods are well developed for recovery, or restoration, of the true image from an observed image affected by convolution blur and additive constant variance Gaussian noise....
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 1998-02, Vol.26 (4), p.393-410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Image degradation by blurring is a well-known phenomenon often described by the mathematical operation of convolution. Fourier methods are well developed for recovery, or restoration, of the true image from an observed image affected by convolution blur and additive constant variance Gaussian noise. One focus of this paper is to describe another statistical restoration method which is available when the image data exhibits Poisson variability. This is a common situation when counts of recorded activity form the image, as in medical imaging contexts.
We apply Maximum Likelihood (ML) and Maximum Penalized Likelihood (MPL) procedures to deconvolve image data which has been degraded by blurring and Poisson variability in recorded activity.
A second focus is formulation and comparison of automated selection procedures for regularization (smoothing) parameters in this context. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/S0167-9473(97)00041-8 |