Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise

Image degradation by blurring is a well-known phenomenon often described by the mathematical operation of convolution. Fourier methods are well developed for recovery, or restoration, of the true image from an observed image affected by convolution blur and additive constant variance Gaussian noise....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 1998-02, Vol.26 (4), p.393-410
Hauptverfasser: Hudson, H.Malcolm, Lee, Thomas C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image degradation by blurring is a well-known phenomenon often described by the mathematical operation of convolution. Fourier methods are well developed for recovery, or restoration, of the true image from an observed image affected by convolution blur and additive constant variance Gaussian noise. One focus of this paper is to describe another statistical restoration method which is available when the image data exhibits Poisson variability. This is a common situation when counts of recorded activity form the image, as in medical imaging contexts. We apply Maximum Likelihood (ML) and Maximum Penalized Likelihood (MPL) procedures to deconvolve image data which has been degraded by blurring and Poisson variability in recorded activity. A second focus is formulation and comparison of automated selection procedures for regularization (smoothing) parameters in this context.
ISSN:0167-9473
1872-7352
DOI:10.1016/S0167-9473(97)00041-8