Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions

A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2022-07, Vol.18 (7), p.4366-4372
Hauptverfasser: Chen, Ahai, Benoit, David M., Scribano, Yohann, Nauts, André, Lauvergnat, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4372
container_issue 7
container_start_page 4366
container_title Journal of chemical theory and computation
container_volume 18
creator Chen, Ahai
Benoit, David M.
Scribano, Yohann
Nauts, André
Lauvergnat, David
description A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.
doi_str_mv 10.1021/acs.jctc.2c00108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2666910516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689214062</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</originalsourceid><addsrcrecordid>eNp1kbtu2zAYRomiQZwm2TsVBLp0qBzeLXVTDOcCOMjgZBZoikzkUqJKUig8FOg75A3zJKFvGQqUC0nwnI8_8AHwGaMxRgRfSBXGKxXVmCiEMMo_gBPMWZEVgoiP72ecj8CnEFYIUcoIPQYjynnOKJ-cgD-L1tm1_AlL--R8E59bWNayj7qG0UEJF-sQdfv69-VSxme40L30Mjau-wHLvreN2l62aAdnnZJ9GKzc2HfOajVYDX-nUDiX_klnZZuUONQ6vW68cAaOjLRBn-_3U_B4NXuY3mTz--vbaTnPJEMiZphitlRMMVpoZkzN0xKCL3MyoQXCS8KQUVopKiaYo1oIkRuDjVEcUVWImp6Cb7vc3rtfgw6xapugtLWy024IFUlKgRHHIqFf_0FXbvBdmi5ReUFwmogkCu0o5V0IXpuq900r_brCqNpUU6Vqqk011b6apHzZBw_LVtfvwqGLBHzfAVv18Ol_894AFPabgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689214062</pqid></control><display><type>article</type><title>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</title><source>American Chemical Society Journals</source><creator>Chen, Ahai ; Benoit, David M. ; Scribano, Yohann ; Nauts, André ; Lauvergnat, David</creator><creatorcontrib>Chen, Ahai ; Benoit, David M. ; Scribano, Yohann ; Nauts, André ; Lauvergnat, David</creatorcontrib><description>A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00108</identifier><identifier>PMID: 35584357</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Cages ; Convergence ; Gas hydrates ; Grid method ; Separation ; Simulation ; Spectroscopy and Excited States</subject><ispartof>Journal of chemical theory and computation, 2022-07, Vol.18 (7), p.4366-4372</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 12, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</citedby><cites>FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</cites><orcidid>0000-0002-7773-6863 ; 0000-0002-8258-3531 ; 0000-0003-3875-5970 ; 0000-0002-8584-7870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00108$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00108$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35584357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ahai</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Scribano, Yohann</creatorcontrib><creatorcontrib>Nauts, André</creatorcontrib><creatorcontrib>Lauvergnat, David</creatorcontrib><title>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.</description><subject>Algorithms</subject><subject>Cages</subject><subject>Convergence</subject><subject>Gas hydrates</subject><subject>Grid method</subject><subject>Separation</subject><subject>Simulation</subject><subject>Spectroscopy and Excited States</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kbtu2zAYRomiQZwm2TsVBLp0qBzeLXVTDOcCOMjgZBZoikzkUqJKUig8FOg75A3zJKFvGQqUC0nwnI8_8AHwGaMxRgRfSBXGKxXVmCiEMMo_gBPMWZEVgoiP72ecj8CnEFYIUcoIPQYjynnOKJ-cgD-L1tm1_AlL--R8E59bWNayj7qG0UEJF-sQdfv69-VSxme40L30Mjau-wHLvreN2l62aAdnnZJ9GKzc2HfOajVYDX-nUDiX_klnZZuUONQ6vW68cAaOjLRBn-_3U_B4NXuY3mTz--vbaTnPJEMiZphitlRMMVpoZkzN0xKCL3MyoQXCS8KQUVopKiaYo1oIkRuDjVEcUVWImp6Cb7vc3rtfgw6xapugtLWy024IFUlKgRHHIqFf_0FXbvBdmi5ReUFwmogkCu0o5V0IXpuq900r_brCqNpUU6Vqqk011b6apHzZBw_LVtfvwqGLBHzfAVv18Ol_894AFPabgg</recordid><startdate>20220712</startdate><enddate>20220712</enddate><creator>Chen, Ahai</creator><creator>Benoit, David M.</creator><creator>Scribano, Yohann</creator><creator>Nauts, André</creator><creator>Lauvergnat, David</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid><orcidid>https://orcid.org/0000-0003-3875-5970</orcidid><orcidid>https://orcid.org/0000-0002-8584-7870</orcidid></search><sort><creationdate>20220712</creationdate><title>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</title><author>Chen, Ahai ; Benoit, David M. ; Scribano, Yohann ; Nauts, André ; Lauvergnat, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cages</topic><topic>Convergence</topic><topic>Gas hydrates</topic><topic>Grid method</topic><topic>Separation</topic><topic>Simulation</topic><topic>Spectroscopy and Excited States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ahai</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Scribano, Yohann</creatorcontrib><creatorcontrib>Nauts, André</creatorcontrib><creatorcontrib>Lauvergnat, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ahai</au><au>Benoit, David M.</au><au>Scribano, Yohann</au><au>Nauts, André</au><au>Lauvergnat, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-07-12</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>4366</spage><epage>4372</epage><pages>4366-4372</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35584357</pmid><doi>10.1021/acs.jctc.2c00108</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid><orcidid>https://orcid.org/0000-0003-3875-5970</orcidid><orcidid>https://orcid.org/0000-0002-8584-7870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2022-07, Vol.18 (7), p.4366-4372
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2666910516
source American Chemical Society Journals
subjects Algorithms
Cages
Convergence
Gas hydrates
Grid method
Separation
Simulation
Spectroscopy and Excited States
title Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smolyak%20Algorithm%20Adapted%20to%20a%20System%E2%80%93Bath%20Separation:%20Application%20to%20an%20Encapsulated%20Molecule%20with%20Large-Amplitude%20Motions&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Chen,%20Ahai&rft.date=2022-07-12&rft.volume=18&rft.issue=7&rft.spage=4366&rft.epage=4372&rft.pages=4366-4372&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00108&rft_dat=%3Cproquest_cross%3E2689214062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689214062&rft_id=info:pmid/35584357&rfr_iscdi=true