Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions
A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-07, Vol.18 (7), p.4366-4372 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4372 |
---|---|
container_issue | 7 |
container_start_page | 4366 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | Chen, Ahai Benoit, David M. Scribano, Yohann Nauts, André Lauvergnat, David |
description | A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage. |
doi_str_mv | 10.1021/acs.jctc.2c00108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2666910516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689214062</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</originalsourceid><addsrcrecordid>eNp1kbtu2zAYRomiQZwm2TsVBLp0qBzeLXVTDOcCOMjgZBZoikzkUqJKUig8FOg75A3zJKFvGQqUC0nwnI8_8AHwGaMxRgRfSBXGKxXVmCiEMMo_gBPMWZEVgoiP72ecj8CnEFYIUcoIPQYjynnOKJ-cgD-L1tm1_AlL--R8E59bWNayj7qG0UEJF-sQdfv69-VSxme40L30Mjau-wHLvreN2l62aAdnnZJ9GKzc2HfOajVYDX-nUDiX_klnZZuUONQ6vW68cAaOjLRBn-_3U_B4NXuY3mTz--vbaTnPJEMiZphitlRMMVpoZkzN0xKCL3MyoQXCS8KQUVopKiaYo1oIkRuDjVEcUVWImp6Cb7vc3rtfgw6xapugtLWy024IFUlKgRHHIqFf_0FXbvBdmi5ReUFwmogkCu0o5V0IXpuq900r_brCqNpUU6Vqqk011b6apHzZBw_LVtfvwqGLBHzfAVv18Ol_894AFPabgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689214062</pqid></control><display><type>article</type><title>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</title><source>American Chemical Society Journals</source><creator>Chen, Ahai ; Benoit, David M. ; Scribano, Yohann ; Nauts, André ; Lauvergnat, David</creator><creatorcontrib>Chen, Ahai ; Benoit, David M. ; Scribano, Yohann ; Nauts, André ; Lauvergnat, David</creatorcontrib><description>A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00108</identifier><identifier>PMID: 35584357</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Cages ; Convergence ; Gas hydrates ; Grid method ; Separation ; Simulation ; Spectroscopy and Excited States</subject><ispartof>Journal of chemical theory and computation, 2022-07, Vol.18 (7), p.4366-4372</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 12, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</citedby><cites>FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</cites><orcidid>0000-0002-7773-6863 ; 0000-0002-8258-3531 ; 0000-0003-3875-5970 ; 0000-0002-8584-7870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00108$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00108$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35584357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ahai</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Scribano, Yohann</creatorcontrib><creatorcontrib>Nauts, André</creatorcontrib><creatorcontrib>Lauvergnat, David</creatorcontrib><title>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.</description><subject>Algorithms</subject><subject>Cages</subject><subject>Convergence</subject><subject>Gas hydrates</subject><subject>Grid method</subject><subject>Separation</subject><subject>Simulation</subject><subject>Spectroscopy and Excited States</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kbtu2zAYRomiQZwm2TsVBLp0qBzeLXVTDOcCOMjgZBZoikzkUqJKUig8FOg75A3zJKFvGQqUC0nwnI8_8AHwGaMxRgRfSBXGKxXVmCiEMMo_gBPMWZEVgoiP72ecj8CnEFYIUcoIPQYjynnOKJ-cgD-L1tm1_AlL--R8E59bWNayj7qG0UEJF-sQdfv69-VSxme40L30Mjau-wHLvreN2l62aAdnnZJ9GKzc2HfOajVYDX-nUDiX_klnZZuUONQ6vW68cAaOjLRBn-_3U_B4NXuY3mTz--vbaTnPJEMiZphitlRMMVpoZkzN0xKCL3MyoQXCS8KQUVopKiaYo1oIkRuDjVEcUVWImp6Cb7vc3rtfgw6xapugtLWy024IFUlKgRHHIqFf_0FXbvBdmi5ReUFwmogkCu0o5V0IXpuq900r_brCqNpUU6Vqqk011b6apHzZBw_LVtfvwqGLBHzfAVv18Ol_894AFPabgg</recordid><startdate>20220712</startdate><enddate>20220712</enddate><creator>Chen, Ahai</creator><creator>Benoit, David M.</creator><creator>Scribano, Yohann</creator><creator>Nauts, André</creator><creator>Lauvergnat, David</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid><orcidid>https://orcid.org/0000-0003-3875-5970</orcidid><orcidid>https://orcid.org/0000-0002-8584-7870</orcidid></search><sort><creationdate>20220712</creationdate><title>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</title><author>Chen, Ahai ; Benoit, David M. ; Scribano, Yohann ; Nauts, André ; Lauvergnat, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-1314bc4c439e4ffd5555665b8273901b240fcecc367150d6668ff1ffc503c96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cages</topic><topic>Convergence</topic><topic>Gas hydrates</topic><topic>Grid method</topic><topic>Separation</topic><topic>Simulation</topic><topic>Spectroscopy and Excited States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ahai</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Scribano, Yohann</creatorcontrib><creatorcontrib>Nauts, André</creatorcontrib><creatorcontrib>Lauvergnat, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ahai</au><au>Benoit, David M.</au><au>Scribano, Yohann</au><au>Nauts, André</au><au>Lauvergnat, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-07-12</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>4366</spage><epage>4372</epage><pages>4366-4372</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>A Smolyak algorithm adapted to system–bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system–bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the “system” part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35584357</pmid><doi>10.1021/acs.jctc.2c00108</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid><orcidid>https://orcid.org/0000-0003-3875-5970</orcidid><orcidid>https://orcid.org/0000-0002-8584-7870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-07, Vol.18 (7), p.4366-4372 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2666910516 |
source | American Chemical Society Journals |
subjects | Algorithms Cages Convergence Gas hydrates Grid method Separation Simulation Spectroscopy and Excited States |
title | Smolyak Algorithm Adapted to a System–Bath Separation: Application to an Encapsulated Molecule with Large-Amplitude Motions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smolyak%20Algorithm%20Adapted%20to%20a%20System%E2%80%93Bath%20Separation:%20Application%20to%20an%20Encapsulated%20Molecule%20with%20Large-Amplitude%20Motions&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Chen,%20Ahai&rft.date=2022-07-12&rft.volume=18&rft.issue=7&rft.spage=4366&rft.epage=4372&rft.pages=4366-4372&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00108&rft_dat=%3Cproquest_cross%3E2689214062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689214062&rft_id=info:pmid/35584357&rfr_iscdi=true |