Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP(20–29) Aggregation

Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a comorbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical neuroscience 2022-06, Vol.13 (11), p.1615-1626
Hauptverfasser: King, Kelsie M., Bevan, David R., Brown, Anne M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1626
container_issue 11
container_start_page 1615
container_title ACS chemical neuroscience
container_volume 13
creator King, Kelsie M.
Bevan, David R.
Brown, Anne M.
description Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a comorbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of interpeptide β-strands comprised of residues 20–29 (IAPP(20–29)). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20–29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics simulations were performed to observe trimer formation on a model fragment of IAPP(20–29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues were critical to oligomer formation, and small-molecule contacts with Phe23 were a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23–Phe23 contacts included aromaticity and carbonyl and hydroxyl group placement. This work provides key information on design considerations for T2D therapeutics that target IAPP aggregation.
doi_str_mv 10.1021/acschemneuro.2c00025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2666907495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666907495</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-2e753e6d1ce383da8c83bfa61f7ccb56638e0f5000c3d94947b42a1bfa52cf883</originalsourceid><addsrcrecordid>eNp9kMtOAjEUhhujEUTfwJgucQH2MpfOkqAoESOJup50OmegZGaK7cyCne_gG_okFkHDylVPTr7_b86H0CUlQ0oYvZHKqSVUNbTWDJkihLDwCHVpEohBTBN-fDB30JlzK0KihIjoFHV4GIqYEd5F9smUoNpSWny7qWWllcMvuvKLRpva4WmdayUbwCNrKr9Tutlg6bDEj7DBE6kaY7GucbMEzy51prc5bAo8Hc3nfUa-Pj5Zco1Hi4WFxU_pOTopZOngYv_20Nvk7nX8MJg930_Ho9lA8kA0AwZxyCHKqQIueC6FEjwrZESLWKksjCIugBShv1vxPAmSIM4CJqlHQqYKIXgP9Xe9a2veW3BNWmmnoCxlDaZ1KYsi7yMOktCjwQ5V1jhnoUjXVlfSblJK0q3t9NB2urftY1f7H9qsgvwv9KvXA2QH-Hi6Mq2t_cH_d34DgIOQKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666907495</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP(20–29) Aggregation</title><source>ACS Publications</source><creator>King, Kelsie M. ; Bevan, David R. ; Brown, Anne M.</creator><creatorcontrib>King, Kelsie M. ; Bevan, David R. ; Brown, Anne M.</creatorcontrib><description>Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a comorbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of interpeptide β-strands comprised of residues 20–29 (IAPP(20–29)). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20–29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics simulations were performed to observe trimer formation on a model fragment of IAPP(20–29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues were critical to oligomer formation, and small-molecule contacts with Phe23 were a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23–Phe23 contacts included aromaticity and carbonyl and hydroxyl group placement. This work provides key information on design considerations for T2D therapeutics that target IAPP aggregation.</description><identifier>ISSN: 1948-7193</identifier><identifier>EISSN: 1948-7193</identifier><identifier>DOI: 10.1021/acschemneuro.2c00025</identifier><identifier>PMID: 35587203</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS chemical neuroscience, 2022-06, Vol.13 (11), p.1615-1626</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-2e753e6d1ce383da8c83bfa61f7ccb56638e0f5000c3d94947b42a1bfa52cf883</citedby><cites>FETCH-LOGICAL-a348t-2e753e6d1ce383da8c83bfa61f7ccb56638e0f5000c3d94947b42a1bfa52cf883</cites><orcidid>0000-0002-5393-2077 ; 0000-0001-6951-8228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschemneuro.2c00025$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschemneuro.2c00025$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35587203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Kelsie M.</creatorcontrib><creatorcontrib>Bevan, David R.</creatorcontrib><creatorcontrib>Brown, Anne M.</creatorcontrib><title>Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP(20–29) Aggregation</title><title>ACS chemical neuroscience</title><addtitle>ACS Chem. Neurosci</addtitle><description>Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a comorbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of interpeptide β-strands comprised of residues 20–29 (IAPP(20–29)). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20–29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics simulations were performed to observe trimer formation on a model fragment of IAPP(20–29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues were critical to oligomer formation, and small-molecule contacts with Phe23 were a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23–Phe23 contacts included aromaticity and carbonyl and hydroxyl group placement. This work provides key information on design considerations for T2D therapeutics that target IAPP aggregation.</description><issn>1948-7193</issn><issn>1948-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEUhhujEUTfwJgucQH2MpfOkqAoESOJup50OmegZGaK7cyCne_gG_okFkHDylVPTr7_b86H0CUlQ0oYvZHKqSVUNbTWDJkihLDwCHVpEohBTBN-fDB30JlzK0KihIjoFHV4GIqYEd5F9smUoNpSWny7qWWllcMvuvKLRpva4WmdayUbwCNrKr9Tutlg6bDEj7DBE6kaY7GucbMEzy51prc5bAo8Hc3nfUa-Pj5Zco1Hi4WFxU_pOTopZOngYv_20Nvk7nX8MJg930_Ho9lA8kA0AwZxyCHKqQIueC6FEjwrZESLWKksjCIugBShv1vxPAmSIM4CJqlHQqYKIXgP9Xe9a2veW3BNWmmnoCxlDaZ1KYsi7yMOktCjwQ5V1jhnoUjXVlfSblJK0q3t9NB2urftY1f7H9qsgvwv9KvXA2QH-Hi6Mq2t_cH_d34DgIOQKg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>King, Kelsie M.</creator><creator>Bevan, David R.</creator><creator>Brown, Anne M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5393-2077</orcidid><orcidid>https://orcid.org/0000-0001-6951-8228</orcidid></search><sort><creationdate>20220601</creationdate><title>Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP(20–29) Aggregation</title><author>King, Kelsie M. ; Bevan, David R. ; Brown, Anne M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-2e753e6d1ce383da8c83bfa61f7ccb56638e0f5000c3d94947b42a1bfa52cf883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Kelsie M.</creatorcontrib><creatorcontrib>Bevan, David R.</creatorcontrib><creatorcontrib>Brown, Anne M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Kelsie M.</au><au>Bevan, David R.</au><au>Brown, Anne M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP(20–29) Aggregation</atitle><jtitle>ACS chemical neuroscience</jtitle><addtitle>ACS Chem. Neurosci</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>13</volume><issue>11</issue><spage>1615</spage><epage>1626</epage><pages>1615-1626</pages><issn>1948-7193</issn><eissn>1948-7193</eissn><abstract>Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a comorbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of interpeptide β-strands comprised of residues 20–29 (IAPP(20–29)). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20–29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics simulations were performed to observe trimer formation on a model fragment of IAPP(20–29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues were critical to oligomer formation, and small-molecule contacts with Phe23 were a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23–Phe23 contacts included aromaticity and carbonyl and hydroxyl group placement. This work provides key information on design considerations for T2D therapeutics that target IAPP aggregation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35587203</pmid><doi>10.1021/acschemneuro.2c00025</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5393-2077</orcidid><orcidid>https://orcid.org/0000-0001-6951-8228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7193
ispartof ACS chemical neuroscience, 2022-06, Vol.13 (11), p.1615-1626
issn 1948-7193
1948-7193
language eng
recordid cdi_proquest_miscellaneous_2666907495
source ACS Publications
title Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP(20–29) Aggregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20Indicate%20Aromaticity%20as%20a%20Key%20Factor%20in%20the%20Inhibition%20of%20IAPP(20%E2%80%9329)%20Aggregation&rft.jtitle=ACS%20chemical%20neuroscience&rft.au=King,%20Kelsie%20M.&rft.date=2022-06-01&rft.volume=13&rft.issue=11&rft.spage=1615&rft.epage=1626&rft.pages=1615-1626&rft.issn=1948-7193&rft.eissn=1948-7193&rft_id=info:doi/10.1021/acschemneuro.2c00025&rft_dat=%3Cproquest_cross%3E2666907495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666907495&rft_id=info:pmid/35587203&rfr_iscdi=true