Artificial Partners to Understand Joint Action: Representing Others to Develop Effective Coordination
In the last years, artificial partners have been proposed as tools to study joint action, as they would allow to address joint behaviors in more controlled experimental conditions. Here we present an artificial partner architecture which is capable of integrating all the available information about...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2022-01, Vol.30, p.1473-1482 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1482 |
---|---|
container_issue | |
container_start_page | 1473 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 30 |
creator | De Vicariis, Cecilia Pusceddu, Giulia Chackochan, Vinil T. Sanguineti, Vittorio |
description | In the last years, artificial partners have been proposed as tools to study joint action, as they would allow to address joint behaviors in more controlled experimental conditions. Here we present an artificial partner architecture which is capable of integrating all the available information about its human counterpart and to develop efficient and natural forms of coordination. The model uses an extended state observer which combines prior information, motor commands and sensory observations to infer the partner's ongoing actions (partner model). Over trials, these estimates are gradually incorporated into action selection. Using a joint planar task in which the partners are required to perform reaching movements while mechanically coupled, we demonstrate that the artificial partner develops an internal representation of its human counterpart, whose accuracy depends on the degree of mechanical coupling and on the reliability of the sensory information. We also show that human-artificial dyads develop coordination strategies which closely resemble those observed in human-human dyads and can be interpreted as Nash equilibria. The proposed approach may provide insights for the understanding of the mechanisms underlying human-human interaction. Further, it may inform the development of novel neuro-rehabilitative solutions and more efficient human-machine interfaces. |
doi_str_mv | 10.1109/TNSRE.2022.3176378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2666548924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9777915</ieee_id><doaj_id>oai_doaj_org_article_9f1516514bfb4dd59d3bef3db6bb7051</doaj_id><sourcerecordid>2672806347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3068-3b142396b8d169357cba5cf6b94f30d78af98d278a1331d4e0e6397a1f25ad463</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhleIipbCHwAJrcSFywZ_e80tSgMUVRSV9mzZ63FxtLGDvanUf4_TpDlwmpH9zKsZPU3zDqMZxkh9vv35-2Y5I4iQGcVSUNm_aM4w532HCEYvdz1lHaMEnTavS1khVCkuXzWntEIMCXnWwDxPwYchmLH9ZfIUIZd2Su1ddLWbTHTtjxTi1M6HKaT4pb2BTYYCcQrxvr2e_hz4C3iAMW3apfdQyQdoFyllF6LZjb1pTrwZC7w91PPm7uvydvG9u7r-drmYX3UDRaLvqMWMUCVs77BQlMvBGj54YRXzFDnZG696R2rFlGLHAIGgShrsCTeOCXreXO5zXTIrvclhbfKjTibop4eU73W9MQwjaOUxx4JjZr1lznHlqAVPnRXWSsRxzfq0z9rk9HcLZdLrUAYYRxMhbYsmQgjOekVYRT_-h67SNsd6aaUk6ZGgTFaK7Kkhp1Iy-OOCGOmdUP0kVO-E6oPQOvThEL21a3DHkWeDFXi_BwIAHL-VlFJV_f8AYvukEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672806347</pqid></control><display><type>article</type><title>Artificial Partners to Understand Joint Action: Representing Others to Develop Effective Coordination</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Vicariis, Cecilia ; Pusceddu, Giulia ; Chackochan, Vinil T. ; Sanguineti, Vittorio</creator><creatorcontrib>De Vicariis, Cecilia ; Pusceddu, Giulia ; Chackochan, Vinil T. ; Sanguineti, Vittorio</creatorcontrib><description>In the last years, artificial partners have been proposed as tools to study joint action, as they would allow to address joint behaviors in more controlled experimental conditions. Here we present an artificial partner architecture which is capable of integrating all the available information about its human counterpart and to develop efficient and natural forms of coordination. The model uses an extended state observer which combines prior information, motor commands and sensory observations to infer the partner's ongoing actions (partner model). Over trials, these estimates are gradually incorporated into action selection. Using a joint planar task in which the partners are required to perform reaching movements while mechanically coupled, we demonstrate that the artificial partner develops an internal representation of its human counterpart, whose accuracy depends on the degree of mechanical coupling and on the reliability of the sensory information. We also show that human-artificial dyads develop coordination strategies which closely resemble those observed in human-human dyads and can be interpreted as Nash equilibria. The proposed approach may provide insights for the understanding of the mechanisms underlying human-human interaction. Further, it may inform the development of novel neuro-rehabilitative solutions and more efficient human-machine interfaces.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3176378</identifier><identifier>PMID: 35584067</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain modeling ; Computational modeling ; Computer architecture ; Coordination ; game theory ; Haptic interfaces ; human–robot interaction ; Interfaces ; Joint action ; Man-machine interfaces ; Mechanical properties ; Motor task performance ; Observers ; partner model ; Robot sensing systems ; State observers ; Task analysis</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022-01, Vol.30, p.1473-1482</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3068-3b142396b8d169357cba5cf6b94f30d78af98d278a1331d4e0e6397a1f25ad463</citedby><cites>FETCH-LOGICAL-c3068-3b142396b8d169357cba5cf6b94f30d78af98d278a1331d4e0e6397a1f25ad463</cites><orcidid>0000-0001-7200-0892 ; 0000-0002-6643-0009 ; 0000-0002-5426-5448 ; 0000-0001-8746-3136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35584067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Vicariis, Cecilia</creatorcontrib><creatorcontrib>Pusceddu, Giulia</creatorcontrib><creatorcontrib>Chackochan, Vinil T.</creatorcontrib><creatorcontrib>Sanguineti, Vittorio</creatorcontrib><title>Artificial Partners to Understand Joint Action: Representing Others to Develop Effective Coordination</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>In the last years, artificial partners have been proposed as tools to study joint action, as they would allow to address joint behaviors in more controlled experimental conditions. Here we present an artificial partner architecture which is capable of integrating all the available information about its human counterpart and to develop efficient and natural forms of coordination. The model uses an extended state observer which combines prior information, motor commands and sensory observations to infer the partner's ongoing actions (partner model). Over trials, these estimates are gradually incorporated into action selection. Using a joint planar task in which the partners are required to perform reaching movements while mechanically coupled, we demonstrate that the artificial partner develops an internal representation of its human counterpart, whose accuracy depends on the degree of mechanical coupling and on the reliability of the sensory information. We also show that human-artificial dyads develop coordination strategies which closely resemble those observed in human-human dyads and can be interpreted as Nash equilibria. The proposed approach may provide insights for the understanding of the mechanisms underlying human-human interaction. Further, it may inform the development of novel neuro-rehabilitative solutions and more efficient human-machine interfaces.</description><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Coordination</subject><subject>game theory</subject><subject>Haptic interfaces</subject><subject>human–robot interaction</subject><subject>Interfaces</subject><subject>Joint action</subject><subject>Man-machine interfaces</subject><subject>Mechanical properties</subject><subject>Motor task performance</subject><subject>Observers</subject><subject>partner model</subject><subject>Robot sensing systems</subject><subject>State observers</subject><subject>Task analysis</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhleIipbCHwAJrcSFywZ_e80tSgMUVRSV9mzZ63FxtLGDvanUf4_TpDlwmpH9zKsZPU3zDqMZxkh9vv35-2Y5I4iQGcVSUNm_aM4w532HCEYvdz1lHaMEnTavS1khVCkuXzWntEIMCXnWwDxPwYchmLH9ZfIUIZd2Su1ddLWbTHTtjxTi1M6HKaT4pb2BTYYCcQrxvr2e_hz4C3iAMW3apfdQyQdoFyllF6LZjb1pTrwZC7w91PPm7uvydvG9u7r-drmYX3UDRaLvqMWMUCVs77BQlMvBGj54YRXzFDnZG696R2rFlGLHAIGgShrsCTeOCXreXO5zXTIrvclhbfKjTibop4eU73W9MQwjaOUxx4JjZr1lznHlqAVPnRXWSsRxzfq0z9rk9HcLZdLrUAYYRxMhbYsmQgjOekVYRT_-h67SNsd6aaUk6ZGgTFaK7Kkhp1Iy-OOCGOmdUP0kVO-E6oPQOvThEL21a3DHkWeDFXi_BwIAHL-VlFJV_f8AYvukEw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>De Vicariis, Cecilia</creator><creator>Pusceddu, Giulia</creator><creator>Chackochan, Vinil T.</creator><creator>Sanguineti, Vittorio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7200-0892</orcidid><orcidid>https://orcid.org/0000-0002-6643-0009</orcidid><orcidid>https://orcid.org/0000-0002-5426-5448</orcidid><orcidid>https://orcid.org/0000-0001-8746-3136</orcidid></search><sort><creationdate>20220101</creationdate><title>Artificial Partners to Understand Joint Action: Representing Others to Develop Effective Coordination</title><author>De Vicariis, Cecilia ; Pusceddu, Giulia ; Chackochan, Vinil T. ; Sanguineti, Vittorio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3068-3b142396b8d169357cba5cf6b94f30d78af98d278a1331d4e0e6397a1f25ad463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Coordination</topic><topic>game theory</topic><topic>Haptic interfaces</topic><topic>human–robot interaction</topic><topic>Interfaces</topic><topic>Joint action</topic><topic>Man-machine interfaces</topic><topic>Mechanical properties</topic><topic>Motor task performance</topic><topic>Observers</topic><topic>partner model</topic><topic>Robot sensing systems</topic><topic>State observers</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Vicariis, Cecilia</creatorcontrib><creatorcontrib>Pusceddu, Giulia</creatorcontrib><creatorcontrib>Chackochan, Vinil T.</creatorcontrib><creatorcontrib>Sanguineti, Vittorio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Vicariis, Cecilia</au><au>Pusceddu, Giulia</au><au>Chackochan, Vinil T.</au><au>Sanguineti, Vittorio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Partners to Understand Joint Action: Representing Others to Develop Effective Coordination</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>30</volume><spage>1473</spage><epage>1482</epage><pages>1473-1482</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>In the last years, artificial partners have been proposed as tools to study joint action, as they would allow to address joint behaviors in more controlled experimental conditions. Here we present an artificial partner architecture which is capable of integrating all the available information about its human counterpart and to develop efficient and natural forms of coordination. The model uses an extended state observer which combines prior information, motor commands and sensory observations to infer the partner's ongoing actions (partner model). Over trials, these estimates are gradually incorporated into action selection. Using a joint planar task in which the partners are required to perform reaching movements while mechanically coupled, we demonstrate that the artificial partner develops an internal representation of its human counterpart, whose accuracy depends on the degree of mechanical coupling and on the reliability of the sensory information. We also show that human-artificial dyads develop coordination strategies which closely resemble those observed in human-human dyads and can be interpreted as Nash equilibria. The proposed approach may provide insights for the understanding of the mechanisms underlying human-human interaction. Further, it may inform the development of novel neuro-rehabilitative solutions and more efficient human-machine interfaces.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35584067</pmid><doi>10.1109/TNSRE.2022.3176378</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7200-0892</orcidid><orcidid>https://orcid.org/0000-0002-6643-0009</orcidid><orcidid>https://orcid.org/0000-0002-5426-5448</orcidid><orcidid>https://orcid.org/0000-0001-8746-3136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2022-01, Vol.30, p.1473-1482 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_proquest_miscellaneous_2666548924 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Brain modeling Computational modeling Computer architecture Coordination game theory Haptic interfaces human–robot interaction Interfaces Joint action Man-machine interfaces Mechanical properties Motor task performance Observers partner model Robot sensing systems State observers Task analysis |
title | Artificial Partners to Understand Joint Action: Representing Others to Develop Effective Coordination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Partners%20to%20Understand%20Joint%20Action:%20Representing%20Others%20to%20Develop%20Effective%20Coordination&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=De%20Vicariis,%20Cecilia&rft.date=2022-01-01&rft.volume=30&rft.spage=1473&rft.epage=1482&rft.pages=1473-1482&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3176378&rft_dat=%3Cproquest_pubme%3E2672806347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672806347&rft_id=info:pmid/35584067&rft_ieee_id=9777915&rft_doaj_id=oai_doaj_org_article_9f1516514bfb4dd59d3bef3db6bb7051&rfr_iscdi=true |