Osteoporosis Diagnostic Model Using a Multichannel Convolutional Neural Network Based on Quantitative Ultrasound Radiofrequency Signal

Quantitative ultrasound (QUS) is a promising screening method for osteoporosis. In this study, a new method to improve the diagnostic accuracy of QUS was established in which a multichannel convolutional neural network (MCNN) processes the raw radiofrequency (RF) signal of QUS. The improvement in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2022-08, Vol.48 (8), p.1590-1601
Hauptverfasser: Luo, Wenqiang, Chen, Zhiwei, Zhang, Qi, Lei, Baiying, Chen, Zhong, Fu, Yuan, Guo, Peidong, Li, Changchuan, Ma, Teng, Liu, Jiang, Ding, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1601
container_issue 8
container_start_page 1590
container_title Ultrasound in medicine & biology
container_volume 48
creator Luo, Wenqiang
Chen, Zhiwei
Zhang, Qi
Lei, Baiying
Chen, Zhong
Fu, Yuan
Guo, Peidong
Li, Changchuan
Ma, Teng
Liu, Jiang
Ding, Yue
description Quantitative ultrasound (QUS) is a promising screening method for osteoporosis. In this study, a new method to improve the diagnostic accuracy of QUS was established in which a multichannel convolutional neural network (MCNN) processes the raw radiofrequency (RF) signal of QUS. The improvement in the diagnostic accuracy of osteoporosis using this new method was evaluated by comparison with the conventional speed of sound (SOS) method. Dual-energy X-ray absorptiometry was used as the diagnostic standard. After being trained, validated and tested in a data set consisting of 274 participants, the MCNN model could significantly raise the accuracy of osteoporosis diagnosis compared with the SOS method. The adjusted MCNN model performed even better when adjusted by age, height and weight data. The sensitivity, specificity and accuracy of the adjusted MCNN method for osteoporosis diagnosis were 80.86%, 84.23% and 83.05%, respectively; the corresponding values for SOS were 50.60%, 73.68% and 66.67%. The area under the receiver operating characteristic curve of the adjusted MCNN method was also higher than that of SOS (0.846 vs. 0.679). In conclusion, our study indicates that the MCNN method may be more accurate than the conventional SOS method. The MCNN tool and ultrasound RF signal analysis are promising future developmental directions for QUS in screening for osteoporosis.
doi_str_mv 10.1016/j.ultrasmedbio.2022.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2666547225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562922001545</els_id><sourcerecordid>2666547225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-8a1140daa06f34770e41ed2a78e04ec0172452d808c1b09853e150c744e6ba223</originalsourceid><addsrcrecordid>eNqNUU1vEzEQtRCIhsJfQBYnLruMvfZ6ww1SvqSWio9I3CzHngSHjZ3a3qD-AX43blMQR04jzbyZ9-Y9Qp4xaBmw_sW2ncaSTN6hW_nYcuC8BdECyHtkxgY1b_icfbtPZtABa2TP5yfkUc5bAFB9px6Sk07KgTEmZ-TXZS4Y9zHF7DM982YTYi7e0ovocKTL7MOGGnpRGb39bkKozUUMhzhOxcdgRvoRp3Rbys-YftDXJqOjMdBPkwnFF1P8AenyVnCcgqOfjfNxnfBqwmCv6Re_qVcekwdrM2Z8cldPyfLtm6-L98355bsPi1fnje0YlGYwjAlwxkC_7oRSgIKh40YNCAItMMWF5G6AwbIVzAfZIZNglRDYrwzn3Sl5fry7T7EKyEXvfLY4jiZgnLLmfd9LoTiXFfryCLXVm5xwrffJ70y61gz0TQ56q__NQd_koEHomkNdfnrHM63q-O_qH-Mr4OwIwPrtwWPS2fpqCDqf0Bbtov8fnt-GtKM1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666547225</pqid></control><display><type>article</type><title>Osteoporosis Diagnostic Model Using a Multichannel Convolutional Neural Network Based on Quantitative Ultrasound Radiofrequency Signal</title><source>Access via ScienceDirect (Elsevier)</source><creator>Luo, Wenqiang ; Chen, Zhiwei ; Zhang, Qi ; Lei, Baiying ; Chen, Zhong ; Fu, Yuan ; Guo, Peidong ; Li, Changchuan ; Ma, Teng ; Liu, Jiang ; Ding, Yue</creator><creatorcontrib>Luo, Wenqiang ; Chen, Zhiwei ; Zhang, Qi ; Lei, Baiying ; Chen, Zhong ; Fu, Yuan ; Guo, Peidong ; Li, Changchuan ; Ma, Teng ; Liu, Jiang ; Ding, Yue</creatorcontrib><description>Quantitative ultrasound (QUS) is a promising screening method for osteoporosis. In this study, a new method to improve the diagnostic accuracy of QUS was established in which a multichannel convolutional neural network (MCNN) processes the raw radiofrequency (RF) signal of QUS. The improvement in the diagnostic accuracy of osteoporosis using this new method was evaluated by comparison with the conventional speed of sound (SOS) method. Dual-energy X-ray absorptiometry was used as the diagnostic standard. After being trained, validated and tested in a data set consisting of 274 participants, the MCNN model could significantly raise the accuracy of osteoporosis diagnosis compared with the SOS method. The adjusted MCNN model performed even better when adjusted by age, height and weight data. The sensitivity, specificity and accuracy of the adjusted MCNN method for osteoporosis diagnosis were 80.86%, 84.23% and 83.05%, respectively; the corresponding values for SOS were 50.60%, 73.68% and 66.67%. The area under the receiver operating characteristic curve of the adjusted MCNN method was also higher than that of SOS (0.846 vs. 0.679). In conclusion, our study indicates that the MCNN method may be more accurate than the conventional SOS method. The MCNN tool and ultrasound RF signal analysis are promising future developmental directions for QUS in screening for osteoporosis.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2022.04.005</identifier><identifier>PMID: 35581115</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Deep learning ; Osteoporosis diagnosis ; Quantitative ultrasound ; Radiofrequency ; Speed of sound</subject><ispartof>Ultrasound in medicine &amp; biology, 2022-08, Vol.48 (8), p.1590-1601</ispartof><rights>2022 World Federation for Ultrasound in Medicine &amp; Biology</rights><rights>Copyright © 2022 World Federation for Ultrasound in Medicine &amp; Biology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-8a1140daa06f34770e41ed2a78e04ec0172452d808c1b09853e150c744e6ba223</citedby><cites>FETCH-LOGICAL-c310t-8a1140daa06f34770e41ed2a78e04ec0172452d808c1b09853e150c744e6ba223</cites><orcidid>0000-0002-2711-4652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2022.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35581115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Wenqiang</creatorcontrib><creatorcontrib>Chen, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Fu, Yuan</creatorcontrib><creatorcontrib>Guo, Peidong</creatorcontrib><creatorcontrib>Li, Changchuan</creatorcontrib><creatorcontrib>Ma, Teng</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Ding, Yue</creatorcontrib><title>Osteoporosis Diagnostic Model Using a Multichannel Convolutional Neural Network Based on Quantitative Ultrasound Radiofrequency Signal</title><title>Ultrasound in medicine &amp; biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Quantitative ultrasound (QUS) is a promising screening method for osteoporosis. In this study, a new method to improve the diagnostic accuracy of QUS was established in which a multichannel convolutional neural network (MCNN) processes the raw radiofrequency (RF) signal of QUS. The improvement in the diagnostic accuracy of osteoporosis using this new method was evaluated by comparison with the conventional speed of sound (SOS) method. Dual-energy X-ray absorptiometry was used as the diagnostic standard. After being trained, validated and tested in a data set consisting of 274 participants, the MCNN model could significantly raise the accuracy of osteoporosis diagnosis compared with the SOS method. The adjusted MCNN model performed even better when adjusted by age, height and weight data. The sensitivity, specificity and accuracy of the adjusted MCNN method for osteoporosis diagnosis were 80.86%, 84.23% and 83.05%, respectively; the corresponding values for SOS were 50.60%, 73.68% and 66.67%. The area under the receiver operating characteristic curve of the adjusted MCNN method was also higher than that of SOS (0.846 vs. 0.679). In conclusion, our study indicates that the MCNN method may be more accurate than the conventional SOS method. The MCNN tool and ultrasound RF signal analysis are promising future developmental directions for QUS in screening for osteoporosis.</description><subject>Deep learning</subject><subject>Osteoporosis diagnosis</subject><subject>Quantitative ultrasound</subject><subject>Radiofrequency</subject><subject>Speed of sound</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUU1vEzEQtRCIhsJfQBYnLruMvfZ6ww1SvqSWio9I3CzHngSHjZ3a3qD-AX43blMQR04jzbyZ9-Y9Qp4xaBmw_sW2ncaSTN6hW_nYcuC8BdECyHtkxgY1b_icfbtPZtABa2TP5yfkUc5bAFB9px6Sk07KgTEmZ-TXZS4Y9zHF7DM982YTYi7e0ovocKTL7MOGGnpRGb39bkKozUUMhzhOxcdgRvoRp3Rbys-YftDXJqOjMdBPkwnFF1P8AenyVnCcgqOfjfNxnfBqwmCv6Re_qVcekwdrM2Z8cldPyfLtm6-L98355bsPi1fnje0YlGYwjAlwxkC_7oRSgIKh40YNCAItMMWF5G6AwbIVzAfZIZNglRDYrwzn3Sl5fry7T7EKyEXvfLY4jiZgnLLmfd9LoTiXFfryCLXVm5xwrffJ70y61gz0TQ56q__NQd_koEHomkNdfnrHM63q-O_qH-Mr4OwIwPrtwWPS2fpqCDqf0Bbtov8fnt-GtKM1</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Luo, Wenqiang</creator><creator>Chen, Zhiwei</creator><creator>Zhang, Qi</creator><creator>Lei, Baiying</creator><creator>Chen, Zhong</creator><creator>Fu, Yuan</creator><creator>Guo, Peidong</creator><creator>Li, Changchuan</creator><creator>Ma, Teng</creator><creator>Liu, Jiang</creator><creator>Ding, Yue</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2711-4652</orcidid></search><sort><creationdate>20220801</creationdate><title>Osteoporosis Diagnostic Model Using a Multichannel Convolutional Neural Network Based on Quantitative Ultrasound Radiofrequency Signal</title><author>Luo, Wenqiang ; Chen, Zhiwei ; Zhang, Qi ; Lei, Baiying ; Chen, Zhong ; Fu, Yuan ; Guo, Peidong ; Li, Changchuan ; Ma, Teng ; Liu, Jiang ; Ding, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-8a1140daa06f34770e41ed2a78e04ec0172452d808c1b09853e150c744e6ba223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Osteoporosis diagnosis</topic><topic>Quantitative ultrasound</topic><topic>Radiofrequency</topic><topic>Speed of sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wenqiang</creatorcontrib><creatorcontrib>Chen, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Fu, Yuan</creatorcontrib><creatorcontrib>Guo, Peidong</creatorcontrib><creatorcontrib>Li, Changchuan</creatorcontrib><creatorcontrib>Ma, Teng</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Ding, Yue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Wenqiang</au><au>Chen, Zhiwei</au><au>Zhang, Qi</au><au>Lei, Baiying</au><au>Chen, Zhong</au><au>Fu, Yuan</au><au>Guo, Peidong</au><au>Li, Changchuan</au><au>Ma, Teng</au><au>Liu, Jiang</au><au>Ding, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoporosis Diagnostic Model Using a Multichannel Convolutional Neural Network Based on Quantitative Ultrasound Radiofrequency Signal</atitle><jtitle>Ultrasound in medicine &amp; biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>48</volume><issue>8</issue><spage>1590</spage><epage>1601</epage><pages>1590-1601</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>Quantitative ultrasound (QUS) is a promising screening method for osteoporosis. In this study, a new method to improve the diagnostic accuracy of QUS was established in which a multichannel convolutional neural network (MCNN) processes the raw radiofrequency (RF) signal of QUS. The improvement in the diagnostic accuracy of osteoporosis using this new method was evaluated by comparison with the conventional speed of sound (SOS) method. Dual-energy X-ray absorptiometry was used as the diagnostic standard. After being trained, validated and tested in a data set consisting of 274 participants, the MCNN model could significantly raise the accuracy of osteoporosis diagnosis compared with the SOS method. The adjusted MCNN model performed even better when adjusted by age, height and weight data. The sensitivity, specificity and accuracy of the adjusted MCNN method for osteoporosis diagnosis were 80.86%, 84.23% and 83.05%, respectively; the corresponding values for SOS were 50.60%, 73.68% and 66.67%. The area under the receiver operating characteristic curve of the adjusted MCNN method was also higher than that of SOS (0.846 vs. 0.679). In conclusion, our study indicates that the MCNN method may be more accurate than the conventional SOS method. The MCNN tool and ultrasound RF signal analysis are promising future developmental directions for QUS in screening for osteoporosis.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>35581115</pmid><doi>10.1016/j.ultrasmedbio.2022.04.005</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2711-4652</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-5629
ispartof Ultrasound in medicine & biology, 2022-08, Vol.48 (8), p.1590-1601
issn 0301-5629
1879-291X
language eng
recordid cdi_proquest_miscellaneous_2666547225
source Access via ScienceDirect (Elsevier)
subjects Deep learning
Osteoporosis diagnosis
Quantitative ultrasound
Radiofrequency
Speed of sound
title Osteoporosis Diagnostic Model Using a Multichannel Convolutional Neural Network Based on Quantitative Ultrasound Radiofrequency Signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoporosis%20Diagnostic%20Model%20Using%20a%20Multichannel%20Convolutional%20Neural%20Network%20Based%20on%20Quantitative%20Ultrasound%20Radiofrequency%20Signal&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Luo,%20Wenqiang&rft.date=2022-08-01&rft.volume=48&rft.issue=8&rft.spage=1590&rft.epage=1601&rft.pages=1590-1601&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2022.04.005&rft_dat=%3Cproquest_cross%3E2666547225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666547225&rft_id=info:pmid/35581115&rft_els_id=S0301562922001545&rfr_iscdi=true