An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification
This paper presents an adaptive implementation of the functional-link neural network (FLNN) architecture together with a supervised learning algorithm that rapidly determines the weights of the network. The proposed algorithm is able to achieve ‘one-shot’ training as opposed to iterative training al...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 1998, Vol.18 (1), p.11-31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 18 |
creator | Chen, C.L.Philip LeClair, Steven R. Pao, Yoh-Han |
description | This paper presents an adaptive implementation of the functional-link neural network (FLNN) architecture together with a supervised learning algorithm that rapidly determines the weights of the network. The proposed algorithm is able to achieve ‘one-shot’ training as opposed to iterative training algorithms in the literature. Also discussed is a stepwise updating algorithm that updates the weights of the network while importing new observations. The proposed algorithms have also been tested on several data sets and the simulation shows a very promising result. |
doi_str_mv | 10.1016/S0925-2312(97)00062-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26660218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231297000623</els_id><sourcerecordid>26660218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-9b06de5174268ea8e1f84a97d84e24fceda8c61df27daaf6dc09fea32c2cd70e3</originalsourceid><addsrcrecordid>eNqFkc9KxDAQxoMouK4-gpCTKFhN0t00PYmI_0DwoJ5DTCYy2qY16S7ua_jEZrfi1dMMM99vMpOPkEPOzjjj8vyJ1WJeiJKL47o6YYxJUZRbZMJVJQollNwmkz_JLtlL6Z0xXnFRT8j3ZaAYbIQWwmAaapzpB1wCxbZvxuKAXaCdp34R7Do3TdFg-KB97CykhOGN-i7-tanpc-cL2w14SgdsoUgQEVJGwKEd6yY4mlZpgJaiy--gR7tB9smON02Cg984JS83189Xd8XD4-391eVDYctSDUX9yqSDOa9mQiowCrhXM1NXTs1AzLwFZ5SV3HlROWO8dJbVHkwprLCuYlBOydE4N6_7uYA06BaThaYxAbpF0kJKyQRXWTgfhTZ2KUXwuo_5vLjSnOm1A3rjgF5_r64rvXFAl5m7GDnIVywRok4WIeTNMIIdtOvwnwk_q9CTiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26660218</pqid></control><display><type>article</type><title>An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, C.L.Philip ; LeClair, Steven R. ; Pao, Yoh-Han</creator><creatorcontrib>Chen, C.L.Philip ; LeClair, Steven R. ; Pao, Yoh-Han</creatorcontrib><description>This paper presents an adaptive implementation of the functional-link neural network (FLNN) architecture together with a supervised learning algorithm that rapidly determines the weights of the network. The proposed algorithm is able to achieve ‘one-shot’ training as opposed to iterative training algorithms in the literature. Also discussed is a stepwise updating algorithm that updates the weights of the network while importing new observations. The proposed algorithms have also been tested on several data sets and the simulation shows a very promising result.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/S0925-2312(97)00062-3</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Forecasting ; Function approximations ; Functional-link neural network ; Instant learning algorithm ; Least squares ; System identification ; Time-series</subject><ispartof>Neurocomputing (Amsterdam), 1998, Vol.18 (1), p.11-31</ispartof><rights>1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-9b06de5174268ea8e1f84a97d84e24fceda8c61df27daaf6dc09fea32c2cd70e3</citedby><cites>FETCH-LOGICAL-c338t-9b06de5174268ea8e1f84a97d84e24fceda8c61df27daaf6dc09fea32c2cd70e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231297000623$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Chen, C.L.Philip</creatorcontrib><creatorcontrib>LeClair, Steven R.</creatorcontrib><creatorcontrib>Pao, Yoh-Han</creatorcontrib><title>An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification</title><title>Neurocomputing (Amsterdam)</title><description>This paper presents an adaptive implementation of the functional-link neural network (FLNN) architecture together with a supervised learning algorithm that rapidly determines the weights of the network. The proposed algorithm is able to achieve ‘one-shot’ training as opposed to iterative training algorithms in the literature. Also discussed is a stepwise updating algorithm that updates the weights of the network while importing new observations. The proposed algorithms have also been tested on several data sets and the simulation shows a very promising result.</description><subject>Forecasting</subject><subject>Function approximations</subject><subject>Functional-link neural network</subject><subject>Instant learning algorithm</subject><subject>Least squares</subject><subject>System identification</subject><subject>Time-series</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkc9KxDAQxoMouK4-gpCTKFhN0t00PYmI_0DwoJ5DTCYy2qY16S7ua_jEZrfi1dMMM99vMpOPkEPOzjjj8vyJ1WJeiJKL47o6YYxJUZRbZMJVJQollNwmkz_JLtlL6Z0xXnFRT8j3ZaAYbIQWwmAaapzpB1wCxbZvxuKAXaCdp34R7Do3TdFg-KB97CykhOGN-i7-tanpc-cL2w14SgdsoUgQEVJGwKEd6yY4mlZpgJaiy--gR7tB9smON02Cg984JS83189Xd8XD4-391eVDYctSDUX9yqSDOa9mQiowCrhXM1NXTs1AzLwFZ5SV3HlROWO8dJbVHkwprLCuYlBOydE4N6_7uYA06BaThaYxAbpF0kJKyQRXWTgfhTZ2KUXwuo_5vLjSnOm1A3rjgF5_r64rvXFAl5m7GDnIVywRok4WIeTNMIIdtOvwnwk_q9CTiw</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Chen, C.L.Philip</creator><creator>LeClair, Steven R.</creator><creator>Pao, Yoh-Han</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1998</creationdate><title>An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification</title><author>Chen, C.L.Philip ; LeClair, Steven R. ; Pao, Yoh-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-9b06de5174268ea8e1f84a97d84e24fceda8c61df27daaf6dc09fea32c2cd70e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Forecasting</topic><topic>Function approximations</topic><topic>Functional-link neural network</topic><topic>Instant learning algorithm</topic><topic>Least squares</topic><topic>System identification</topic><topic>Time-series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, C.L.Philip</creatorcontrib><creatorcontrib>LeClair, Steven R.</creatorcontrib><creatorcontrib>Pao, Yoh-Han</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, C.L.Philip</au><au>LeClair, Steven R.</au><au>Pao, Yoh-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>1998</date><risdate>1998</risdate><volume>18</volume><issue>1</issue><spage>11</spage><epage>31</epage><pages>11-31</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper presents an adaptive implementation of the functional-link neural network (FLNN) architecture together with a supervised learning algorithm that rapidly determines the weights of the network. The proposed algorithm is able to achieve ‘one-shot’ training as opposed to iterative training algorithms in the literature. Also discussed is a stepwise updating algorithm that updates the weights of the network while importing new observations. The proposed algorithms have also been tested on several data sets and the simulation shows a very promising result.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0925-2312(97)00062-3</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 1998, Vol.18 (1), p.11-31 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_26660218 |
source | Elsevier ScienceDirect Journals |
subjects | Forecasting Function approximations Functional-link neural network Instant learning algorithm Least squares System identification Time-series |
title | An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20incremental%20adaptive%20implementation%20of%20functional-link%20processing%20for%20function%20approximation,%20time-series%20prediction,%20and%20system%20identification&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Chen,%20C.L.Philip&rft.date=1998&rft.volume=18&rft.issue=1&rft.spage=11&rft.epage=31&rft.pages=11-31&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/S0925-2312(97)00062-3&rft_dat=%3Cproquest_cross%3E26660218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26660218&rft_id=info:pmid/&rft_els_id=S0925231297000623&rfr_iscdi=true |