Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations

Multidomain decomposition techniques are an alternative to improve the performance of the dual reciprocity boundary element method (DRBEM) in the BEM numerical solution of the Navier–Stokes equations. In the traditional DRBEM, the domain integrals that arise from the non-linear terms in the Navier–S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2001, Vol.25 (1), p.57-69
Hauptverfasser: Florez, W.F., Power, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 57
container_title Engineering analysis with boundary elements
container_volume 25
creator Florez, W.F.
Power, H.
description Multidomain decomposition techniques are an alternative to improve the performance of the dual reciprocity boundary element method (DRBEM) in the BEM numerical solution of the Navier–Stokes equations. In the traditional DRBEM, the domain integrals that arise from the non-linear terms in the Navier–Stokes equations are approximated by a series of particular solutions and a set of collocation nodes distributed over the integration domain. In the present approach a subdomain technique is used in which the integration domain is divided into small quadrilateral elements whose four edges are either isoparametric linear discontinuous or linear continuous boundary elements. The domain integrals in each subdomain are transformed into boundary integrals by dual reciprocity with augmented thin-plate splines, i.e. r 2 log(r), plus three additional linear terms from a Pascal triangle expansion. In the present work we compare the numerical results obtained by using both kind of boundary elements, continuous and discontinuous, in each subdomain.
doi_str_mv 10.1016/S0955-7997(00)00051-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26659587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799700000515</els_id><sourcerecordid>26659587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-368f4b648e1edf6c7546291be5203891f9271c08ce6ccded8716519a8892b58b3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoMoOM76CEJAED20W-mepJOTyOA_WNzDKngL6aSajXYns0naZW--g-_hQ-2TmJlZFm-eiiq-r4r6fYQ8Y_CaAROnF6A4b3ql-pcArwCAs4Y_ICsm-65hqv_2kKzuJY_Jk5y_A7AOQKzIn22cdyb5HAMdsFwjBmpjKD4sccnUBEedz_9MhrgEZ9INxQlnDCVTH2i5RDovU_Euzqb2bjETTWj9LkXryw2dsVxGR8eYDtocp6X4ejKOh75cx8b5ui7XYbV-Nj89pttfvy9K_IGZ4tVi9vp8Qh6NZsr49K6uydf3775sPzZn5x8-bd-eNbYTojSdkONmEBuJDN0obM83olVsQN5CJxUbVdszC9KisNahkz0TnCkjpWoHLoduTV4c99YHrhbMRc-VAk6TCVgp6FYIrnjluyb8KLQp5pxw1Lvk58pHM9D7dPQhHb1HrwH0IR3Nq-_53QGTrZnGZIL1-d6sQHXtpqreHFVYf90j0dl6DBadr3SLdtH_585fNaOqTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26659587</pqid></control><display><type>article</type><title>Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals</source><creator>Florez, W.F. ; Power, H.</creator><creatorcontrib>Florez, W.F. ; Power, H.</creatorcontrib><description>Multidomain decomposition techniques are an alternative to improve the performance of the dual reciprocity boundary element method (DRBEM) in the BEM numerical solution of the Navier–Stokes equations. In the traditional DRBEM, the domain integrals that arise from the non-linear terms in the Navier–Stokes equations are approximated by a series of particular solutions and a set of collocation nodes distributed over the integration domain. In the present approach a subdomain technique is used in which the integration domain is divided into small quadrilateral elements whose four edges are either isoparametric linear discontinuous or linear continuous boundary elements. The domain integrals in each subdomain are transformed into boundary integrals by dual reciprocity with augmented thin-plate splines, i.e. r 2 log(r), plus three additional linear terms from a Pascal triangle expansion. In the present work we compare the numerical results obtained by using both kind of boundary elements, continuous and discontinuous, in each subdomain.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/S0955-7997(00)00051-5</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary elements ; Boundary-integral methods ; Computational techniques ; Domain decomposition ; Dual reciprocity ; Exact sciences and technology ; Mathematical methods in physics ; Multidomain ; Navier–Stokes equations ; Physics</subject><ispartof>Engineering analysis with boundary elements, 2001, Vol.25 (1), p.57-69</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-368f4b648e1edf6c7546291be5203891f9271c08ce6ccded8716519a8892b58b3</citedby><cites>FETCH-LOGICAL-c366t-368f4b648e1edf6c7546291be5203891f9271c08ce6ccded8716519a8892b58b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955799700000515$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=909324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Florez, W.F.</creatorcontrib><creatorcontrib>Power, H.</creatorcontrib><title>Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations</title><title>Engineering analysis with boundary elements</title><description>Multidomain decomposition techniques are an alternative to improve the performance of the dual reciprocity boundary element method (DRBEM) in the BEM numerical solution of the Navier–Stokes equations. In the traditional DRBEM, the domain integrals that arise from the non-linear terms in the Navier–Stokes equations are approximated by a series of particular solutions and a set of collocation nodes distributed over the integration domain. In the present approach a subdomain technique is used in which the integration domain is divided into small quadrilateral elements whose four edges are either isoparametric linear discontinuous or linear continuous boundary elements. The domain integrals in each subdomain are transformed into boundary integrals by dual reciprocity with augmented thin-plate splines, i.e. r 2 log(r), plus three additional linear terms from a Pascal triangle expansion. In the present work we compare the numerical results obtained by using both kind of boundary elements, continuous and discontinuous, in each subdomain.</description><subject>Boundary elements</subject><subject>Boundary-integral methods</subject><subject>Computational techniques</subject><subject>Domain decomposition</subject><subject>Dual reciprocity</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Multidomain</subject><subject>Navier–Stokes equations</subject><subject>Physics</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoMoOM76CEJAED20W-mepJOTyOA_WNzDKngL6aSajXYns0naZW--g-_hQ-2TmJlZFm-eiiq-r4r6fYQ8Y_CaAROnF6A4b3ql-pcArwCAs4Y_ICsm-65hqv_2kKzuJY_Jk5y_A7AOQKzIn22cdyb5HAMdsFwjBmpjKD4sccnUBEedz_9MhrgEZ9INxQlnDCVTH2i5RDovU_Euzqb2bjETTWj9LkXryw2dsVxGR8eYDtocp6X4ejKOh75cx8b5ui7XYbV-Nj89pttfvy9K_IGZ4tVi9vp8Qh6NZsr49K6uydf3775sPzZn5x8-bd-eNbYTojSdkONmEBuJDN0obM83olVsQN5CJxUbVdszC9KisNahkz0TnCkjpWoHLoduTV4c99YHrhbMRc-VAk6TCVgp6FYIrnjluyb8KLQp5pxw1Lvk58pHM9D7dPQhHb1HrwH0IR3Nq-_53QGTrZnGZIL1-d6sQHXtpqreHFVYf90j0dl6DBadr3SLdtH_585fNaOqTQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Florez, W.F.</creator><creator>Power, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2001</creationdate><title>Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations</title><author>Florez, W.F. ; Power, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-368f4b648e1edf6c7546291be5203891f9271c08ce6ccded8716519a8892b58b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Boundary elements</topic><topic>Boundary-integral methods</topic><topic>Computational techniques</topic><topic>Domain decomposition</topic><topic>Dual reciprocity</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Multidomain</topic><topic>Navier–Stokes equations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florez, W.F.</creatorcontrib><creatorcontrib>Power, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florez, W.F.</au><au>Power, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2001</date><risdate>2001</risdate><volume>25</volume><issue>1</issue><spage>57</spage><epage>69</epage><pages>57-69</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>Multidomain decomposition techniques are an alternative to improve the performance of the dual reciprocity boundary element method (DRBEM) in the BEM numerical solution of the Navier–Stokes equations. In the traditional DRBEM, the domain integrals that arise from the non-linear terms in the Navier–Stokes equations are approximated by a series of particular solutions and a set of collocation nodes distributed over the integration domain. In the present approach a subdomain technique is used in which the integration domain is divided into small quadrilateral elements whose four edges are either isoparametric linear discontinuous or linear continuous boundary elements. The domain integrals in each subdomain are transformed into boundary integrals by dual reciprocity with augmented thin-plate splines, i.e. r 2 log(r), plus three additional linear terms from a Pascal triangle expansion. In the present work we compare the numerical results obtained by using both kind of boundary elements, continuous and discontinuous, in each subdomain.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0955-7997(00)00051-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2001, Vol.25 (1), p.57-69
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_26659587
source Elsevier ScienceDirect Journals
subjects Boundary elements
Boundary-integral methods
Computational techniques
Domain decomposition
Dual reciprocity
Exact sciences and technology
Mathematical methods in physics
Multidomain
Navier–Stokes equations
Physics
title Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20between%20continuous%20and%20discontinuous%20boundary%20elements%20in%20the%20multidomain%20dual%20reciprocity%20method%20for%20the%20solution%20of%20the%20two-dimensional%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Florez,%20W.F.&rft.date=2001&rft.volume=25&rft.issue=1&rft.spage=57&rft.epage=69&rft.pages=57-69&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/S0955-7997(00)00051-5&rft_dat=%3Cproquest_cross%3E26659587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26659587&rft_id=info:pmid/&rft_els_id=S0955799700000515&rfr_iscdi=true