Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System
Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixa...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-05, Vol.14 (20), p.23364-23374 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23374 |
---|---|
container_issue | 20 |
container_start_page | 23364 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | He, Ying Wang, Shurong Han, Xinyue Shen, Jiayuan Lu, Yanwei Zhao, Jinzhi Shen, Chengpin Qiao, Liang |
description | Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetrahydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest. |
doi_str_mv | 10.1021/acsami.2c01918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665561886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665561886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EolBYGVFGhJRiO47jjCXiT6oEUmG2rt0bNVVTFztBysY78IY8CUEp3ZjuGb5zpPsRcsHohFHObsAGqKsJt5TlTB2QE5YLESue8sN9FmJETkNYUSoTTtNjMkrSNJOSsxNSvCxd40K3aZYYqhC5MppabKDByHTRfOu8q9sAkfuABr4_v4rFPLqt3LIzvlpE8y40WJ-RoxLWAc93d0ze7u9ei8d49vzwVExnMXBJm1gom2bIcsWUEYwqyJiSIjcMUiZshkaUggJCJkFasGjAJsjQCotIOTfJmFwNu1vv3lsMja6rYHG9hg26NmguZZpKppTs0cmAWu9C8Fjqra9q8J1mVP-K04M4vRPXFy53262pcbHH_0z1wPUA9EW9cq3f9K_-t_YD8M55hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665561886</pqid></control><display><type>article</type><title>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</title><source>American Chemical Society Journals</source><creator>He, Ying ; Wang, Shurong ; Han, Xinyue ; Shen, Jiayuan ; Lu, Yanwei ; Zhao, Jinzhi ; Shen, Chengpin ; Qiao, Liang</creator><creatorcontrib>He, Ying ; Wang, Shurong ; Han, Xinyue ; Shen, Jiayuan ; Lu, Yanwei ; Zhao, Jinzhi ; Shen, Chengpin ; Qiao, Liang</creatorcontrib><description>Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetrahydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c01918</identifier><identifier>PMID: 35576621</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-05, Vol.14 (20), p.23364-23374</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</citedby><cites>FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</cites><orcidid>0000-0002-6233-8459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c01918$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c01918$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35576621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Han, Xinyue</creatorcontrib><creatorcontrib>Shen, Jiayuan</creatorcontrib><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Zhao, Jinzhi</creatorcontrib><creatorcontrib>Shen, Chengpin</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><title>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetrahydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EolBYGVFGhJRiO47jjCXiT6oEUmG2rt0bNVVTFztBysY78IY8CUEp3ZjuGb5zpPsRcsHohFHObsAGqKsJt5TlTB2QE5YLESue8sN9FmJETkNYUSoTTtNjMkrSNJOSsxNSvCxd40K3aZYYqhC5MppabKDByHTRfOu8q9sAkfuABr4_v4rFPLqt3LIzvlpE8y40WJ-RoxLWAc93d0ze7u9ei8d49vzwVExnMXBJm1gom2bIcsWUEYwqyJiSIjcMUiZshkaUggJCJkFasGjAJsjQCotIOTfJmFwNu1vv3lsMja6rYHG9hg26NmguZZpKppTs0cmAWu9C8Fjqra9q8J1mVP-K04M4vRPXFy53262pcbHH_0z1wPUA9EW9cq3f9K_-t_YD8M55hA</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>He, Ying</creator><creator>Wang, Shurong</creator><creator>Han, Xinyue</creator><creator>Shen, Jiayuan</creator><creator>Lu, Yanwei</creator><creator>Zhao, Jinzhi</creator><creator>Shen, Chengpin</creator><creator>Qiao, Liang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></search><sort><creationdate>20220525</creationdate><title>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</title><author>He, Ying ; Wang, Shurong ; Han, Xinyue ; Shen, Jiayuan ; Lu, Yanwei ; Zhao, Jinzhi ; Shen, Chengpin ; Qiao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Han, Xinyue</creatorcontrib><creatorcontrib>Shen, Jiayuan</creatorcontrib><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Zhao, Jinzhi</creatorcontrib><creatorcontrib>Shen, Chengpin</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ying</au><au>Wang, Shurong</au><au>Han, Xinyue</au><au>Shen, Jiayuan</au><au>Lu, Yanwei</au><au>Zhao, Jinzhi</au><au>Shen, Chengpin</au><au>Qiao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>14</volume><issue>20</issue><spage>23364</spage><epage>23374</epage><pages>23364-23374</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetrahydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35576621</pmid><doi>10.1021/acsami.2c01918</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-05, Vol.14 (20), p.23364-23374 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2665561886 |
source | American Chemical Society Journals |
subjects | Energy, Environmental, and Catalysis Applications |
title | Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthesis%20of%20Acetate%20by%20Sporomusa%20ovata%E2%80%93CdS%20Biohybrid%20System&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=He,%20Ying&rft.date=2022-05-25&rft.volume=14&rft.issue=20&rft.spage=23364&rft.epage=23374&rft.pages=23364-23374&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c01918&rft_dat=%3Cproquest_cross%3E2665561886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665561886&rft_id=info:pmid/35576621&rfr_iscdi=true |