Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System

Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-05, Vol.14 (20), p.23364-23374
Hauptverfasser: He, Ying, Wang, Shurong, Han, Xinyue, Shen, Jiayuan, Lu, Yanwei, Zhao, Jinzhi, Shen, Chengpin, Qiao, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23374
container_issue 20
container_start_page 23364
container_title ACS applied materials & interfaces
container_volume 14
creator He, Ying
Wang, Shurong
Han, Xinyue
Shen, Jiayuan
Lu, Yanwei
Zhao, Jinzhi
Shen, Chengpin
Qiao, Liang
description Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetra­hydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.
doi_str_mv 10.1021/acsami.2c01918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665561886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665561886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EolBYGVFGhJRiO47jjCXiT6oEUmG2rt0bNVVTFztBysY78IY8CUEp3ZjuGb5zpPsRcsHohFHObsAGqKsJt5TlTB2QE5YLESue8sN9FmJETkNYUSoTTtNjMkrSNJOSsxNSvCxd40K3aZYYqhC5MppabKDByHTRfOu8q9sAkfuABr4_v4rFPLqt3LIzvlpE8y40WJ-RoxLWAc93d0ze7u9ei8d49vzwVExnMXBJm1gom2bIcsWUEYwqyJiSIjcMUiZshkaUggJCJkFasGjAJsjQCotIOTfJmFwNu1vv3lsMja6rYHG9hg26NmguZZpKppTs0cmAWu9C8Fjqra9q8J1mVP-K04M4vRPXFy53262pcbHH_0z1wPUA9EW9cq3f9K_-t_YD8M55hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665561886</pqid></control><display><type>article</type><title>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</title><source>American Chemical Society Journals</source><creator>He, Ying ; Wang, Shurong ; Han, Xinyue ; Shen, Jiayuan ; Lu, Yanwei ; Zhao, Jinzhi ; Shen, Chengpin ; Qiao, Liang</creator><creatorcontrib>He, Ying ; Wang, Shurong ; Han, Xinyue ; Shen, Jiayuan ; Lu, Yanwei ; Zhao, Jinzhi ; Shen, Chengpin ; Qiao, Liang</creatorcontrib><description>Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetra­hydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c01918</identifier><identifier>PMID: 35576621</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-05, Vol.14 (20), p.23364-23374</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</citedby><cites>FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</cites><orcidid>0000-0002-6233-8459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c01918$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c01918$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35576621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Han, Xinyue</creatorcontrib><creatorcontrib>Shen, Jiayuan</creatorcontrib><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Zhao, Jinzhi</creatorcontrib><creatorcontrib>Shen, Chengpin</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><title>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetra­hydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EolBYGVFGhJRiO47jjCXiT6oEUmG2rt0bNVVTFztBysY78IY8CUEp3ZjuGb5zpPsRcsHohFHObsAGqKsJt5TlTB2QE5YLESue8sN9FmJETkNYUSoTTtNjMkrSNJOSsxNSvCxd40K3aZYYqhC5MppabKDByHTRfOu8q9sAkfuABr4_v4rFPLqt3LIzvlpE8y40WJ-RoxLWAc93d0ze7u9ei8d49vzwVExnMXBJm1gom2bIcsWUEYwqyJiSIjcMUiZshkaUggJCJkFasGjAJsjQCotIOTfJmFwNu1vv3lsMja6rYHG9hg26NmguZZpKppTs0cmAWu9C8Fjqra9q8J1mVP-K04M4vRPXFy53262pcbHH_0z1wPUA9EW9cq3f9K_-t_YD8M55hA</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>He, Ying</creator><creator>Wang, Shurong</creator><creator>Han, Xinyue</creator><creator>Shen, Jiayuan</creator><creator>Lu, Yanwei</creator><creator>Zhao, Jinzhi</creator><creator>Shen, Chengpin</creator><creator>Qiao, Liang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></search><sort><creationdate>20220525</creationdate><title>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</title><author>He, Ying ; Wang, Shurong ; Han, Xinyue ; Shen, Jiayuan ; Lu, Yanwei ; Zhao, Jinzhi ; Shen, Chengpin ; Qiao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-48c57e19818b4108a718649b1a514c7eb4f40aea76a6cacebac3e1ec4cee022b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Han, Xinyue</creatorcontrib><creatorcontrib>Shen, Jiayuan</creatorcontrib><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Zhao, Jinzhi</creatorcontrib><creatorcontrib>Shen, Chengpin</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ying</au><au>Wang, Shurong</au><au>Han, Xinyue</au><au>Shen, Jiayuan</au><au>Lu, Yanwei</au><au>Zhao, Jinzhi</au><au>Shen, Chengpin</au><au>Qiao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>14</volume><issue>20</issue><spage>23364</spage><epage>23374</epage><pages>23364-23374</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata–CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood–Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetra­hydrofolate:corrinoid iron–sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35576621</pmid><doi>10.1021/acsami.2c01918</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6233-8459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-05, Vol.14 (20), p.23364-23374
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2665561886
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Photosynthesis of Acetate by Sporomusa ovata–CdS Biohybrid System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthesis%20of%20Acetate%20by%20Sporomusa%20ovata%E2%80%93CdS%20Biohybrid%20System&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=He,%20Ying&rft.date=2022-05-25&rft.volume=14&rft.issue=20&rft.spage=23364&rft.epage=23374&rft.pages=23364-23374&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c01918&rft_dat=%3Cproquest_cross%3E2665561886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665561886&rft_id=info:pmid/35576621&rfr_iscdi=true