Friction-Dominated Carrier Excitation and Transport Mechanism for GaN-Based Direct-Current Triboelectric Nanogenerators

The semiconductor triboelectric nanogenerator (TENG) based on the tribovoltaic effect has the characteristics of direct current and high current density, but the energy transfer and conversion mechanism is not completely clear. Here, a series of gallium nitride (GaN)-based semiconductor direct-curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-05, Vol.14 (20), p.24020-24027
Hauptverfasser: Chen, Yunkang, Zhang, Zhi, Wang, Zhaozheng, Bu, Tianzhao, Dong, Sicheng, Wei, Wenwang, Chen, Zhiqiang, Lin, Yuan, Lv, Yi, Zhou, Han, Sun, Wenhong, Zhang, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24027
container_issue 20
container_start_page 24020
container_title ACS applied materials & interfaces
container_volume 14
creator Chen, Yunkang
Zhang, Zhi
Wang, Zhaozheng
Bu, Tianzhao
Dong, Sicheng
Wei, Wenwang
Chen, Zhiqiang
Lin, Yuan
Lv, Yi
Zhou, Han
Sun, Wenhong
Zhang, Chi
description The semiconductor triboelectric nanogenerator (TENG) based on the tribovoltaic effect has the characteristics of direct current and high current density, but the energy transfer and conversion mechanism is not completely clear. Here, a series of gallium nitride (GaN)-based semiconductor direct-current TENGs (SDC-TENGs) are investigated for clarifying the carrier excitation and transport mechanism. During the friction process, the external output current always flows from GaN to silicon or aluminum, regardless of the direction of the built-in electric field, because of the semiconductor types. These results reveal that the carrier transport direction is dominated by the interfacial electric field formed by triboelectrification, which is also verified under different bias voltages. Moreover, the characteristics dependent on the frictional force have been systematically investigated under different normal forces and frictional modes. The open-circuit voltage and short-circuit current of SDC-TENG are both increased with a larger frictional force, which shows that the more severe friction results in both a larger interface electric field and more excited carriers. The maximum voltage can reach 25 V for lighting up a series of LEDs, which is enhanced by four times compared to the cutting-edge reported SDC-TENGs. This work has clarified the friction-dominated carrier excitation and transport mechanism for the tribovoltaic effect, which demonstrates the great potential of semiconductor materials for frictional energy recovery and utilization.
doi_str_mv 10.1021/acsami.2c03853
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665112564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665112564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-8afe4c24c4d68b1663052ca3bba9f93b37df464e8a6544c56837a3e8069085ea3</originalsourceid><addsrcrecordid>eNp1kM1v2zAMxYVhRb_W646Dj0MBp7K-ohy3pOkGpO2lOxu0TG8qYimjZKz976siaW87kSB_7xF8jH1u-KzhorkCl2D0M-G4tFp-YKfNQqnaCi0-vvdKnbCzlB45N1JwfcxOpNZzbaQ9Zf_W5F32MdSrOPoAGftqCUQeqbp-cj7D67KC0FcPBCHtIuXqFt0fCD6N1RCpuoG7-jukIlx5Qpfr5USEIReB7yJuy6jcqO4gxN8YkCBHSp_Y0QDbhBeHes5-ra8flj_qzf3Nz-W3TQ3C8FxbGFA5oZzqje0aYyTXwoHsOlgMC9nJeT8oo9CC0Uo5baycg0TLzYJbjSDP2de9747i3wlTbkefHG63EDBOqRXG6KYR2qiCzvaoo5gS4dDuyI9Az23D29ew233Y7SHsIvhy8J66Eft3_C3dAlzugSJsH-NEobz6P7cXLw6LNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665112564</pqid></control><display><type>article</type><title>Friction-Dominated Carrier Excitation and Transport Mechanism for GaN-Based Direct-Current Triboelectric Nanogenerators</title><source>ACS Publications</source><creator>Chen, Yunkang ; Zhang, Zhi ; Wang, Zhaozheng ; Bu, Tianzhao ; Dong, Sicheng ; Wei, Wenwang ; Chen, Zhiqiang ; Lin, Yuan ; Lv, Yi ; Zhou, Han ; Sun, Wenhong ; Zhang, Chi</creator><creatorcontrib>Chen, Yunkang ; Zhang, Zhi ; Wang, Zhaozheng ; Bu, Tianzhao ; Dong, Sicheng ; Wei, Wenwang ; Chen, Zhiqiang ; Lin, Yuan ; Lv, Yi ; Zhou, Han ; Sun, Wenhong ; Zhang, Chi</creatorcontrib><description>The semiconductor triboelectric nanogenerator (TENG) based on the tribovoltaic effect has the characteristics of direct current and high current density, but the energy transfer and conversion mechanism is not completely clear. Here, a series of gallium nitride (GaN)-based semiconductor direct-current TENGs (SDC-TENGs) are investigated for clarifying the carrier excitation and transport mechanism. During the friction process, the external output current always flows from GaN to silicon or aluminum, regardless of the direction of the built-in electric field, because of the semiconductor types. These results reveal that the carrier transport direction is dominated by the interfacial electric field formed by triboelectrification, which is also verified under different bias voltages. Moreover, the characteristics dependent on the frictional force have been systematically investigated under different normal forces and frictional modes. The open-circuit voltage and short-circuit current of SDC-TENG are both increased with a larger frictional force, which shows that the more severe friction results in both a larger interface electric field and more excited carriers. The maximum voltage can reach 25 V for lighting up a series of LEDs, which is enhanced by four times compared to the cutting-edge reported SDC-TENGs. This work has clarified the friction-dominated carrier excitation and transport mechanism for the tribovoltaic effect, which demonstrates the great potential of semiconductor materials for frictional energy recovery and utilization.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c03853</identifier><identifier>PMID: 35575638</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-05, Vol.14 (20), p.24020-24027</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a260t-8afe4c24c4d68b1663052ca3bba9f93b37df464e8a6544c56837a3e8069085ea3</citedby><cites>FETCH-LOGICAL-a260t-8afe4c24c4d68b1663052ca3bba9f93b37df464e8a6544c56837a3e8069085ea3</cites><orcidid>0000-0002-7511-805X ; 0000-0003-1295-7080 ; 0000-0003-3233-1819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c03853$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c03853$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35575638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yunkang</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><creatorcontrib>Wang, Zhaozheng</creatorcontrib><creatorcontrib>Bu, Tianzhao</creatorcontrib><creatorcontrib>Dong, Sicheng</creatorcontrib><creatorcontrib>Wei, Wenwang</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Lv, Yi</creatorcontrib><creatorcontrib>Zhou, Han</creatorcontrib><creatorcontrib>Sun, Wenhong</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><title>Friction-Dominated Carrier Excitation and Transport Mechanism for GaN-Based Direct-Current Triboelectric Nanogenerators</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The semiconductor triboelectric nanogenerator (TENG) based on the tribovoltaic effect has the characteristics of direct current and high current density, but the energy transfer and conversion mechanism is not completely clear. Here, a series of gallium nitride (GaN)-based semiconductor direct-current TENGs (SDC-TENGs) are investigated for clarifying the carrier excitation and transport mechanism. During the friction process, the external output current always flows from GaN to silicon or aluminum, regardless of the direction of the built-in electric field, because of the semiconductor types. These results reveal that the carrier transport direction is dominated by the interfacial electric field formed by triboelectrification, which is also verified under different bias voltages. Moreover, the characteristics dependent on the frictional force have been systematically investigated under different normal forces and frictional modes. The open-circuit voltage and short-circuit current of SDC-TENG are both increased with a larger frictional force, which shows that the more severe friction results in both a larger interface electric field and more excited carriers. The maximum voltage can reach 25 V for lighting up a series of LEDs, which is enhanced by four times compared to the cutting-edge reported SDC-TENGs. This work has clarified the friction-dominated carrier excitation and transport mechanism for the tribovoltaic effect, which demonstrates the great potential of semiconductor materials for frictional energy recovery and utilization.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1v2zAMxYVhRb_W646Dj0MBp7K-ohy3pOkGpO2lOxu0TG8qYimjZKz976siaW87kSB_7xF8jH1u-KzhorkCl2D0M-G4tFp-YKfNQqnaCi0-vvdKnbCzlB45N1JwfcxOpNZzbaQ9Zf_W5F32MdSrOPoAGftqCUQeqbp-cj7D67KC0FcPBCHtIuXqFt0fCD6N1RCpuoG7-jukIlx5Qpfr5USEIReB7yJuy6jcqO4gxN8YkCBHSp_Y0QDbhBeHes5-ra8flj_qzf3Nz-W3TQ3C8FxbGFA5oZzqje0aYyTXwoHsOlgMC9nJeT8oo9CC0Uo5baycg0TLzYJbjSDP2de9747i3wlTbkefHG63EDBOqRXG6KYR2qiCzvaoo5gS4dDuyI9Az23D29ew233Y7SHsIvhy8J66Eft3_C3dAlzugSJsH-NEobz6P7cXLw6LNA</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Chen, Yunkang</creator><creator>Zhang, Zhi</creator><creator>Wang, Zhaozheng</creator><creator>Bu, Tianzhao</creator><creator>Dong, Sicheng</creator><creator>Wei, Wenwang</creator><creator>Chen, Zhiqiang</creator><creator>Lin, Yuan</creator><creator>Lv, Yi</creator><creator>Zhou, Han</creator><creator>Sun, Wenhong</creator><creator>Zhang, Chi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7511-805X</orcidid><orcidid>https://orcid.org/0000-0003-1295-7080</orcidid><orcidid>https://orcid.org/0000-0003-3233-1819</orcidid></search><sort><creationdate>20220525</creationdate><title>Friction-Dominated Carrier Excitation and Transport Mechanism for GaN-Based Direct-Current Triboelectric Nanogenerators</title><author>Chen, Yunkang ; Zhang, Zhi ; Wang, Zhaozheng ; Bu, Tianzhao ; Dong, Sicheng ; Wei, Wenwang ; Chen, Zhiqiang ; Lin, Yuan ; Lv, Yi ; Zhou, Han ; Sun, Wenhong ; Zhang, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-8afe4c24c4d68b1663052ca3bba9f93b37df464e8a6544c56837a3e8069085ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yunkang</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><creatorcontrib>Wang, Zhaozheng</creatorcontrib><creatorcontrib>Bu, Tianzhao</creatorcontrib><creatorcontrib>Dong, Sicheng</creatorcontrib><creatorcontrib>Wei, Wenwang</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Lv, Yi</creatorcontrib><creatorcontrib>Zhou, Han</creatorcontrib><creatorcontrib>Sun, Wenhong</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yunkang</au><au>Zhang, Zhi</au><au>Wang, Zhaozheng</au><au>Bu, Tianzhao</au><au>Dong, Sicheng</au><au>Wei, Wenwang</au><au>Chen, Zhiqiang</au><au>Lin, Yuan</au><au>Lv, Yi</au><au>Zhou, Han</au><au>Sun, Wenhong</au><au>Zhang, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friction-Dominated Carrier Excitation and Transport Mechanism for GaN-Based Direct-Current Triboelectric Nanogenerators</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>14</volume><issue>20</issue><spage>24020</spage><epage>24027</epage><pages>24020-24027</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The semiconductor triboelectric nanogenerator (TENG) based on the tribovoltaic effect has the characteristics of direct current and high current density, but the energy transfer and conversion mechanism is not completely clear. Here, a series of gallium nitride (GaN)-based semiconductor direct-current TENGs (SDC-TENGs) are investigated for clarifying the carrier excitation and transport mechanism. During the friction process, the external output current always flows from GaN to silicon or aluminum, regardless of the direction of the built-in electric field, because of the semiconductor types. These results reveal that the carrier transport direction is dominated by the interfacial electric field formed by triboelectrification, which is also verified under different bias voltages. Moreover, the characteristics dependent on the frictional force have been systematically investigated under different normal forces and frictional modes. The open-circuit voltage and short-circuit current of SDC-TENG are both increased with a larger frictional force, which shows that the more severe friction results in both a larger interface electric field and more excited carriers. The maximum voltage can reach 25 V for lighting up a series of LEDs, which is enhanced by four times compared to the cutting-edge reported SDC-TENGs. This work has clarified the friction-dominated carrier excitation and transport mechanism for the tribovoltaic effect, which demonstrates the great potential of semiconductor materials for frictional energy recovery and utilization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35575638</pmid><doi>10.1021/acsami.2c03853</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7511-805X</orcidid><orcidid>https://orcid.org/0000-0003-1295-7080</orcidid><orcidid>https://orcid.org/0000-0003-3233-1819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-05, Vol.14 (20), p.24020-24027
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2665112564
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title Friction-Dominated Carrier Excitation and Transport Mechanism for GaN-Based Direct-Current Triboelectric Nanogenerators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friction-Dominated%20Carrier%20Excitation%20and%20Transport%20Mechanism%20for%20GaN-Based%20Direct-Current%20Triboelectric%20Nanogenerators&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Yunkang&rft.date=2022-05-25&rft.volume=14&rft.issue=20&rft.spage=24020&rft.epage=24027&rft.pages=24020-24027&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c03853&rft_dat=%3Cproquest_cross%3E2665112564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665112564&rft_id=info:pmid/35575638&rfr_iscdi=true