Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal
The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2022-09, Vol.303 (Pt 1), p.134943-134943, Article 134943 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134943 |
---|---|
container_issue | Pt 1 |
container_start_page | 134943 |
container_title | Chemosphere (Oxford) |
container_volume | 303 |
creator | Li, Wei Yue, Huanyu Zhang, Chunyan Hu, Junyu Wang, Qiaoli Li, Yuanming Zhang, Shihan Chen, Jianmeng Zhao, Jingkai |
description | The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires.
[Display omitted]
•An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal. |
doi_str_mv | 10.1016/j.chemosphere.2022.134943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665108859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653522014369</els_id><sourcerecordid>2665108859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</originalsourceid><addsrcrecordid>eNqNkc9uEzEQxi0EoqHwCsjcuCS112vv-oiiQpEqeoGz5bVnG0dee7G9Rekj8ZQ4Tag4cpqR5vfNvw-hD5RsKKHiar8xO5hinneQYNOQptlQ1sqWvUAr2ndyTRvZv0QrQlq-FpzxC_Qm5z0hVczla3TBOBdSML5Cv6_DvQsAyYV7PC2-uGy0BzxHf5gPKUUPV0anIQYcdIhlGSBjFwqkURvAJeIhxlwweDAlVWopzrtHXVzNXcAaDy6ei8elXe2O8yEXmLCJy-zB4l-u7PBzUQ85pvlJP8aEv93hVG990P4tejVqn-HdOV6iH5-vv29v1rd3X75uP92uDSNdWXej4KShHWmBk55b2Y9dZ6wY2dAPo2mN1J2hzIq-aYgEYccWukHaTjLLWsvYJfp46jun-HOBXNRUnwLe6wBxyaoRglPS91xWVJ5Qk2LOCUY1JzfpdFCUqKNVaq_-sUodrVInq6r2_XnMMkxgn5V_vanA9gRAPfbBQVLZOAgGrEv1n8pG9x9j_gDCObD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665108859</pqid></control><display><type>article</type><title>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Wei ; Yue, Huanyu ; Zhang, Chunyan ; Hu, Junyu ; Wang, Qiaoli ; Li, Yuanming ; Zhang, Shihan ; Chen, Jianmeng ; Zhao, Jingkai</creator><creatorcontrib>Li, Wei ; Yue, Huanyu ; Zhang, Chunyan ; Hu, Junyu ; Wang, Qiaoli ; Li, Yuanming ; Zhang, Shihan ; Chen, Jianmeng ; Zhao, Jingkai</creatorcontrib><description>The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires.
[Display omitted]
•An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2022.134943</identifier><identifier>PMID: 35569635</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocathode ; Electron transfer ; Interface engineering ; NO removal ; PPy/CNTs</subject><ispartof>Chemosphere (Oxford), 2022-09, Vol.303 (Pt 1), p.134943-134943, Article 134943</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</citedby><cites>FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</cites><orcidid>0000-0001-6024-3387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2022.134943$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35569635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yue, Huanyu</creatorcontrib><creatorcontrib>Zhang, Chunyan</creatorcontrib><creatorcontrib>Hu, Junyu</creatorcontrib><creatorcontrib>Wang, Qiaoli</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><creatorcontrib>Zhao, Jingkai</creatorcontrib><title>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires.
[Display omitted]
•An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal.</description><subject>Biocathode</subject><subject>Electron transfer</subject><subject>Interface engineering</subject><subject>NO removal</subject><subject>PPy/CNTs</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkc9uEzEQxi0EoqHwCsjcuCS112vv-oiiQpEqeoGz5bVnG0dee7G9Rekj8ZQ4Tag4cpqR5vfNvw-hD5RsKKHiar8xO5hinneQYNOQptlQ1sqWvUAr2ndyTRvZv0QrQlq-FpzxC_Qm5z0hVczla3TBOBdSML5Cv6_DvQsAyYV7PC2-uGy0BzxHf5gPKUUPV0anIQYcdIhlGSBjFwqkURvAJeIhxlwweDAlVWopzrtHXVzNXcAaDy6ei8elXe2O8yEXmLCJy-zB4l-u7PBzUQ85pvlJP8aEv93hVG990P4tejVqn-HdOV6iH5-vv29v1rd3X75uP92uDSNdWXej4KShHWmBk55b2Y9dZ6wY2dAPo2mN1J2hzIq-aYgEYccWukHaTjLLWsvYJfp46jun-HOBXNRUnwLe6wBxyaoRglPS91xWVJ5Qk2LOCUY1JzfpdFCUqKNVaq_-sUodrVInq6r2_XnMMkxgn5V_vanA9gRAPfbBQVLZOAgGrEv1n8pG9x9j_gDCObD_</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Li, Wei</creator><creator>Yue, Huanyu</creator><creator>Zhang, Chunyan</creator><creator>Hu, Junyu</creator><creator>Wang, Qiaoli</creator><creator>Li, Yuanming</creator><creator>Zhang, Shihan</creator><creator>Chen, Jianmeng</creator><creator>Zhao, Jingkai</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6024-3387</orcidid></search><sort><creationdate>20220901</creationdate><title>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</title><author>Li, Wei ; Yue, Huanyu ; Zhang, Chunyan ; Hu, Junyu ; Wang, Qiaoli ; Li, Yuanming ; Zhang, Shihan ; Chen, Jianmeng ; Zhao, Jingkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocathode</topic><topic>Electron transfer</topic><topic>Interface engineering</topic><topic>NO removal</topic><topic>PPy/CNTs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yue, Huanyu</creatorcontrib><creatorcontrib>Zhang, Chunyan</creatorcontrib><creatorcontrib>Hu, Junyu</creatorcontrib><creatorcontrib>Wang, Qiaoli</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><creatorcontrib>Zhao, Jingkai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei</au><au>Yue, Huanyu</au><au>Zhang, Chunyan</au><au>Hu, Junyu</au><au>Wang, Qiaoli</au><au>Li, Yuanming</au><au>Zhang, Shihan</au><au>Chen, Jianmeng</au><au>Zhao, Jingkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>303</volume><issue>Pt 1</issue><spage>134943</spage><epage>134943</epage><pages>134943-134943</pages><artnum>134943</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires.
[Display omitted]
•An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35569635</pmid><doi>10.1016/j.chemosphere.2022.134943</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6024-3387</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2022-09, Vol.303 (Pt 1), p.134943-134943, Article 134943 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2665108859 |
source | Access via ScienceDirect (Elsevier) |
subjects | Biocathode Electron transfer Interface engineering NO removal PPy/CNTs |
title | Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20multiscale%20polypyrrole/carbon%20nanotubes%20interface%20to%20boost%20electron%20utilization%20in%20a%20bioelectrochemical%20system%20coupled%20with%20chemical%20absorption%20for%20NO%20removal&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Li,%20Wei&rft.date=2022-09-01&rft.volume=303&rft.issue=Pt%201&rft.spage=134943&rft.epage=134943&rft.pages=134943-134943&rft.artnum=134943&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2022.134943&rft_dat=%3Cproquest_cross%3E2665108859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665108859&rft_id=info:pmid/35569635&rft_els_id=S0045653522014369&rfr_iscdi=true |