Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal

The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-09, Vol.303 (Pt 1), p.134943-134943, Article 134943
Hauptverfasser: Li, Wei, Yue, Huanyu, Zhang, Chunyan, Hu, Junyu, Wang, Qiaoli, Li, Yuanming, Zhang, Shihan, Chen, Jianmeng, Zhao, Jingkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134943
container_issue Pt 1
container_start_page 134943
container_title Chemosphere (Oxford)
container_volume 303
creator Li, Wei
Yue, Huanyu
Zhang, Chunyan
Hu, Junyu
Wang, Qiaoli
Li, Yuanming
Zhang, Shihan
Chen, Jianmeng
Zhao, Jingkai
description The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires. [Display omitted] •An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal.
doi_str_mv 10.1016/j.chemosphere.2022.134943
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665108859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653522014369</els_id><sourcerecordid>2665108859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</originalsourceid><addsrcrecordid>eNqNkc9uEzEQxi0EoqHwCsjcuCS112vv-oiiQpEqeoGz5bVnG0dee7G9Rekj8ZQ4Tag4cpqR5vfNvw-hD5RsKKHiar8xO5hinneQYNOQptlQ1sqWvUAr2ndyTRvZv0QrQlq-FpzxC_Qm5z0hVczla3TBOBdSML5Cv6_DvQsAyYV7PC2-uGy0BzxHf5gPKUUPV0anIQYcdIhlGSBjFwqkURvAJeIhxlwweDAlVWopzrtHXVzNXcAaDy6ei8elXe2O8yEXmLCJy-zB4l-u7PBzUQ85pvlJP8aEv93hVG990P4tejVqn-HdOV6iH5-vv29v1rd3X75uP92uDSNdWXej4KShHWmBk55b2Y9dZ6wY2dAPo2mN1J2hzIq-aYgEYccWukHaTjLLWsvYJfp46jun-HOBXNRUnwLe6wBxyaoRglPS91xWVJ5Qk2LOCUY1JzfpdFCUqKNVaq_-sUodrVInq6r2_XnMMkxgn5V_vanA9gRAPfbBQVLZOAgGrEv1n8pG9x9j_gDCObD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665108859</pqid></control><display><type>article</type><title>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Wei ; Yue, Huanyu ; Zhang, Chunyan ; Hu, Junyu ; Wang, Qiaoli ; Li, Yuanming ; Zhang, Shihan ; Chen, Jianmeng ; Zhao, Jingkai</creator><creatorcontrib>Li, Wei ; Yue, Huanyu ; Zhang, Chunyan ; Hu, Junyu ; Wang, Qiaoli ; Li, Yuanming ; Zhang, Shihan ; Chen, Jianmeng ; Zhao, Jingkai</creatorcontrib><description>The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires. [Display omitted] •An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2022.134943</identifier><identifier>PMID: 35569635</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocathode ; Electron transfer ; Interface engineering ; NO removal ; PPy/CNTs</subject><ispartof>Chemosphere (Oxford), 2022-09, Vol.303 (Pt 1), p.134943-134943, Article 134943</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</citedby><cites>FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</cites><orcidid>0000-0001-6024-3387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2022.134943$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35569635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yue, Huanyu</creatorcontrib><creatorcontrib>Zhang, Chunyan</creatorcontrib><creatorcontrib>Hu, Junyu</creatorcontrib><creatorcontrib>Wang, Qiaoli</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><creatorcontrib>Zhao, Jingkai</creatorcontrib><title>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires. [Display omitted] •An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal.</description><subject>Biocathode</subject><subject>Electron transfer</subject><subject>Interface engineering</subject><subject>NO removal</subject><subject>PPy/CNTs</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkc9uEzEQxi0EoqHwCsjcuCS112vv-oiiQpEqeoGz5bVnG0dee7G9Rekj8ZQ4Tag4cpqR5vfNvw-hD5RsKKHiar8xO5hinneQYNOQptlQ1sqWvUAr2ndyTRvZv0QrQlq-FpzxC_Qm5z0hVczla3TBOBdSML5Cv6_DvQsAyYV7PC2-uGy0BzxHf5gPKUUPV0anIQYcdIhlGSBjFwqkURvAJeIhxlwweDAlVWopzrtHXVzNXcAaDy6ei8elXe2O8yEXmLCJy-zB4l-u7PBzUQ85pvlJP8aEv93hVG990P4tejVqn-HdOV6iH5-vv29v1rd3X75uP92uDSNdWXej4KShHWmBk55b2Y9dZ6wY2dAPo2mN1J2hzIq-aYgEYccWukHaTjLLWsvYJfp46jun-HOBXNRUnwLe6wBxyaoRglPS91xWVJ5Qk2LOCUY1JzfpdFCUqKNVaq_-sUodrVInq6r2_XnMMkxgn5V_vanA9gRAPfbBQVLZOAgGrEv1n8pG9x9j_gDCObD_</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Li, Wei</creator><creator>Yue, Huanyu</creator><creator>Zhang, Chunyan</creator><creator>Hu, Junyu</creator><creator>Wang, Qiaoli</creator><creator>Li, Yuanming</creator><creator>Zhang, Shihan</creator><creator>Chen, Jianmeng</creator><creator>Zhao, Jingkai</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6024-3387</orcidid></search><sort><creationdate>20220901</creationdate><title>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</title><author>Li, Wei ; Yue, Huanyu ; Zhang, Chunyan ; Hu, Junyu ; Wang, Qiaoli ; Li, Yuanming ; Zhang, Shihan ; Chen, Jianmeng ; Zhao, Jingkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-7f65021704e5085d98f77cd6f3b8bfc4c9a7c13d682209e6df4e7b9d793d34d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocathode</topic><topic>Electron transfer</topic><topic>Interface engineering</topic><topic>NO removal</topic><topic>PPy/CNTs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yue, Huanyu</creatorcontrib><creatorcontrib>Zhang, Chunyan</creatorcontrib><creatorcontrib>Hu, Junyu</creatorcontrib><creatorcontrib>Wang, Qiaoli</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><creatorcontrib>Zhao, Jingkai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei</au><au>Yue, Huanyu</au><au>Zhang, Chunyan</au><au>Hu, Junyu</au><au>Wang, Qiaoli</au><au>Li, Yuanming</au><au>Zhang, Shihan</au><au>Chen, Jianmeng</au><au>Zhao, Jingkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>303</volume><issue>Pt 1</issue><spage>134943</spage><epage>134943</epage><pages>134943-134943</pages><artnum>134943</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%–302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, “electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO”, is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires. [Display omitted] •An interface was engineered by microscale polypyrrole and nanoscale carbon nanotubes.•Synergistic effect existed between the multiscale interface and microbial nanowires.•Faraday efficiency along Fe(III)EDTA reduction increased 40.7%–302.6% by PPy/CNTs.•Functional microorganisms were also enriched in the CABER system for NO removal.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35569635</pmid><doi>10.1016/j.chemosphere.2022.134943</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6024-3387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2022-09, Vol.303 (Pt 1), p.134943-134943, Article 134943
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2665108859
source Access via ScienceDirect (Elsevier)
subjects Biocathode
Electron transfer
Interface engineering
NO removal
PPy/CNTs
title Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20multiscale%20polypyrrole/carbon%20nanotubes%20interface%20to%20boost%20electron%20utilization%20in%20a%20bioelectrochemical%20system%20coupled%20with%20chemical%20absorption%20for%20NO%20removal&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Li,%20Wei&rft.date=2022-09-01&rft.volume=303&rft.issue=Pt%201&rft.spage=134943&rft.epage=134943&rft.pages=134943-134943&rft.artnum=134943&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2022.134943&rft_dat=%3Cproquest_cross%3E2665108859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665108859&rft_id=info:pmid/35569635&rft_els_id=S0045653522014369&rfr_iscdi=true