Data reduction by randomization subsampling for the study of large hyperspectral datasets
Large amount of information in hyperspectral images (HSI) generally makes their analysis (e.g., principal component analysis, PCA) time consuming and often requires a lot of random access memory (RAM) and high computing power. This is particularly problematic for analysis of large images, containing...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2022-05, Vol.1209, p.339793-339793, Article 339793 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!