R-R interval-based sleep apnea screening by a recurrent neural network in a large clinical polysomnography dataset
•Sleep apnea syndrome (SAS) screening AI-based on R-R interval data was validated with a large clinical polysomnography dataset.•AUC of 0.92, a sensitivity of 0.80 and a specificity of 0.84 were achieved.•The SAS screening algorithm is easy to implement into a smartphone app. Easily detecting patien...
Gespeichert in:
Veröffentlicht in: | Clinical neurophysiology 2022-07, Vol.139, p.80-89 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | Clinical neurophysiology |
container_volume | 139 |
creator | Iwasaki, Ayako Fujiwara, Koichi Nakayama, Chikao Sumi, Yukiyoshi Kano, Manabu Nagamoto, Tetsuharu Kadotani, Hiroshi |
description | •Sleep apnea syndrome (SAS) screening AI-based on R-R interval data was validated with a large clinical polysomnography dataset.•AUC of 0.92, a sensitivity of 0.80 and a specificity of 0.84 were achieved.•The SAS screening algorithm is easy to implement into a smartphone app.
Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-use SAS screening system. In this study, we validate a previously developed SAS screening methodology using a large clinical polysomnography (PSG) dataset (N = 938).
We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent neural networks, and created a model to discriminate respiratory conditions using the training dataset (N = 468). Its performance was validated using the validation dataset (N = 470).
Our method screened patients with severe SAS (apnea hypopnea index; AHI ≥ 30) with an area under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the model screened patients with moderate/severe SAS (AHI ≥ 15) with an AUC of 0.89, a sensitivity of 0.75, and a specificity of 0.87.
Our method achieved high screening performance when applied to a large clinical dataset.
Our method can help realize an easy-to-use SAS screening system because RRI data can be easily measured with a wearable heart rate sensor. It has been validated on a large dataset including subjects with various backgrounds and is expected to perform well in real-world clinical practice. |
doi_str_mv | 10.1016/j.clinph.2022.04.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665108322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388245722002474</els_id><sourcerecordid>2665108322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-64e10193ac0674dcfd4f6e74cc456d228e4613877900920d175a2ab654f79a7d3</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVoiN0k3yAUHXvZraTVn91LoZgmDRgCITkLWZp15MjarbSb4m9fGac95jQD8-bNvB9CN5TUlFD5bVfb4OP4UjPCWE14TSg7Q0vaKla1nWCfSt-0bcW4UAv0OecdIUQRzi7QohFCdqyTS5Qeq0fs4wTpzYRqYzI4nAPAiM0YweBsE0D0cYs3B2xwAjunBHHCEeZkQinTnyG9FosyDSZtAR_f8rbMxiEc8rCPwzaZ8eWAnZmK_3SFznsTMly_10v0fPvzafWrWj_c3a9-rCsraDtVkkPJ2TXGEqm4s73jvQTFreVCOsZa4LIEVKojpGPEUSUMMxspeK86o1xzib6efMc0_J4hT3rvs4UQTIRhzppJKShpG8aKlJ-kNg05J-j1mPzepIOmRB9p650-0dZH2ppwXWiXtS_vF-bNHtz_pX94i-D7SQAl55uHpLP1EC04X0hO2g3-4wt_AXRLk1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665108322</pqid></control><display><type>article</type><title>R-R interval-based sleep apnea screening by a recurrent neural network in a large clinical polysomnography dataset</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Iwasaki, Ayako ; Fujiwara, Koichi ; Nakayama, Chikao ; Sumi, Yukiyoshi ; Kano, Manabu ; Nagamoto, Tetsuharu ; Kadotani, Hiroshi</creator><creatorcontrib>Iwasaki, Ayako ; Fujiwara, Koichi ; Nakayama, Chikao ; Sumi, Yukiyoshi ; Kano, Manabu ; Nagamoto, Tetsuharu ; Kadotani, Hiroshi</creatorcontrib><description>•Sleep apnea syndrome (SAS) screening AI-based on R-R interval data was validated with a large clinical polysomnography dataset.•AUC of 0.92, a sensitivity of 0.80 and a specificity of 0.84 were achieved.•The SAS screening algorithm is easy to implement into a smartphone app.
Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-use SAS screening system. In this study, we validate a previously developed SAS screening methodology using a large clinical polysomnography (PSG) dataset (N = 938).
We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent neural networks, and created a model to discriminate respiratory conditions using the training dataset (N = 468). Its performance was validated using the validation dataset (N = 470).
Our method screened patients with severe SAS (apnea hypopnea index; AHI ≥ 30) with an area under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the model screened patients with moderate/severe SAS (AHI ≥ 15) with an AUC of 0.89, a sensitivity of 0.75, and a specificity of 0.87.
Our method achieved high screening performance when applied to a large clinical dataset.
Our method can help realize an easy-to-use SAS screening system because RRI data can be easily measured with a wearable heart rate sensor. It has been validated on a large dataset including subjects with various backgrounds and is expected to perform well in real-world clinical practice.</description><identifier>ISSN: 1388-2457</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/j.clinph.2022.04.012</identifier><identifier>PMID: 35569296</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Long short-term memory ; Machine learning ; Sleep apnea syndrome ; Telemedicine ; Wearable sensor</subject><ispartof>Clinical neurophysiology, 2022-07, Vol.139, p.80-89</ispartof><rights>2022 International Federation of Clinical Neurophysiology</rights><rights>Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-64e10193ac0674dcfd4f6e74cc456d228e4613877900920d175a2ab654f79a7d3</citedby><cites>FETCH-LOGICAL-c518t-64e10193ac0674dcfd4f6e74cc456d228e4613877900920d175a2ab654f79a7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1388245722002474$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35569296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwasaki, Ayako</creatorcontrib><creatorcontrib>Fujiwara, Koichi</creatorcontrib><creatorcontrib>Nakayama, Chikao</creatorcontrib><creatorcontrib>Sumi, Yukiyoshi</creatorcontrib><creatorcontrib>Kano, Manabu</creatorcontrib><creatorcontrib>Nagamoto, Tetsuharu</creatorcontrib><creatorcontrib>Kadotani, Hiroshi</creatorcontrib><title>R-R interval-based sleep apnea screening by a recurrent neural network in a large clinical polysomnography dataset</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>•Sleep apnea syndrome (SAS) screening AI-based on R-R interval data was validated with a large clinical polysomnography dataset.•AUC of 0.92, a sensitivity of 0.80 and a specificity of 0.84 were achieved.•The SAS screening algorithm is easy to implement into a smartphone app.
Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-use SAS screening system. In this study, we validate a previously developed SAS screening methodology using a large clinical polysomnography (PSG) dataset (N = 938).
We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent neural networks, and created a model to discriminate respiratory conditions using the training dataset (N = 468). Its performance was validated using the validation dataset (N = 470).
Our method screened patients with severe SAS (apnea hypopnea index; AHI ≥ 30) with an area under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the model screened patients with moderate/severe SAS (AHI ≥ 15) with an AUC of 0.89, a sensitivity of 0.75, and a specificity of 0.87.
Our method achieved high screening performance when applied to a large clinical dataset.
Our method can help realize an easy-to-use SAS screening system because RRI data can be easily measured with a wearable heart rate sensor. It has been validated on a large dataset including subjects with various backgrounds and is expected to perform well in real-world clinical practice.</description><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Sleep apnea syndrome</subject><subject>Telemedicine</subject><subject>Wearable sensor</subject><issn>1388-2457</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxUVoiN0k3yAUHXvZraTVn91LoZgmDRgCITkLWZp15MjarbSb4m9fGac95jQD8-bNvB9CN5TUlFD5bVfb4OP4UjPCWE14TSg7Q0vaKla1nWCfSt-0bcW4UAv0OecdIUQRzi7QohFCdqyTS5Qeq0fs4wTpzYRqYzI4nAPAiM0YweBsE0D0cYs3B2xwAjunBHHCEeZkQinTnyG9FosyDSZtAR_f8rbMxiEc8rCPwzaZ8eWAnZmK_3SFznsTMly_10v0fPvzafWrWj_c3a9-rCsraDtVkkPJ2TXGEqm4s73jvQTFreVCOsZa4LIEVKojpGPEUSUMMxspeK86o1xzib6efMc0_J4hT3rvs4UQTIRhzppJKShpG8aKlJ-kNg05J-j1mPzepIOmRB9p650-0dZH2ppwXWiXtS_vF-bNHtz_pX94i-D7SQAl55uHpLP1EC04X0hO2g3-4wt_AXRLk1A</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Iwasaki, Ayako</creator><creator>Fujiwara, Koichi</creator><creator>Nakayama, Chikao</creator><creator>Sumi, Yukiyoshi</creator><creator>Kano, Manabu</creator><creator>Nagamoto, Tetsuharu</creator><creator>Kadotani, Hiroshi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220701</creationdate><title>R-R interval-based sleep apnea screening by a recurrent neural network in a large clinical polysomnography dataset</title><author>Iwasaki, Ayako ; Fujiwara, Koichi ; Nakayama, Chikao ; Sumi, Yukiyoshi ; Kano, Manabu ; Nagamoto, Tetsuharu ; Kadotani, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-64e10193ac0674dcfd4f6e74cc456d228e4613877900920d175a2ab654f79a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Sleep apnea syndrome</topic><topic>Telemedicine</topic><topic>Wearable sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasaki, Ayako</creatorcontrib><creatorcontrib>Fujiwara, Koichi</creatorcontrib><creatorcontrib>Nakayama, Chikao</creatorcontrib><creatorcontrib>Sumi, Yukiyoshi</creatorcontrib><creatorcontrib>Kano, Manabu</creatorcontrib><creatorcontrib>Nagamoto, Tetsuharu</creatorcontrib><creatorcontrib>Kadotani, Hiroshi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasaki, Ayako</au><au>Fujiwara, Koichi</au><au>Nakayama, Chikao</au><au>Sumi, Yukiyoshi</au><au>Kano, Manabu</au><au>Nagamoto, Tetsuharu</au><au>Kadotani, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>R-R interval-based sleep apnea screening by a recurrent neural network in a large clinical polysomnography dataset</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>139</volume><spage>80</spage><epage>89</epage><pages>80-89</pages><issn>1388-2457</issn><eissn>1872-8952</eissn><abstract>•Sleep apnea syndrome (SAS) screening AI-based on R-R interval data was validated with a large clinical polysomnography dataset.•AUC of 0.92, a sensitivity of 0.80 and a specificity of 0.84 were achieved.•The SAS screening algorithm is easy to implement into a smartphone app.
Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-use SAS screening system. In this study, we validate a previously developed SAS screening methodology using a large clinical polysomnography (PSG) dataset (N = 938).
We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent neural networks, and created a model to discriminate respiratory conditions using the training dataset (N = 468). Its performance was validated using the validation dataset (N = 470).
Our method screened patients with severe SAS (apnea hypopnea index; AHI ≥ 30) with an area under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the model screened patients with moderate/severe SAS (AHI ≥ 15) with an AUC of 0.89, a sensitivity of 0.75, and a specificity of 0.87.
Our method achieved high screening performance when applied to a large clinical dataset.
Our method can help realize an easy-to-use SAS screening system because RRI data can be easily measured with a wearable heart rate sensor. It has been validated on a large dataset including subjects with various backgrounds and is expected to perform well in real-world clinical practice.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35569296</pmid><doi>10.1016/j.clinph.2022.04.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-2457 |
ispartof | Clinical neurophysiology, 2022-07, Vol.139, p.80-89 |
issn | 1388-2457 1872-8952 |
language | eng |
recordid | cdi_proquest_miscellaneous_2665108322 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Long short-term memory Machine learning Sleep apnea syndrome Telemedicine Wearable sensor |
title | R-R interval-based sleep apnea screening by a recurrent neural network in a large clinical polysomnography dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=R-R%20interval-based%20sleep%20apnea%20screening%20by%20a%20recurrent%20neural%20network%20in%20a%20large%20clinical%20polysomnography%20dataset&rft.jtitle=Clinical%20neurophysiology&rft.au=Iwasaki,%20Ayako&rft.date=2022-07-01&rft.volume=139&rft.spage=80&rft.epage=89&rft.pages=80-89&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/j.clinph.2022.04.012&rft_dat=%3Cproquest_cross%3E2665108322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665108322&rft_id=info:pmid/35569296&rft_els_id=S1388245722002474&rfr_iscdi=true |