Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways

The aim of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes myocardial cell viability in three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. Cardiomyoblasts (H9C2s) were mixed in 6% (w/v) GelMA bio-inks and printed using an extrusion-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomaterials applications 2022-09, Vol.37 (3), p.402-414
Hauptverfasser: Hu, Yugang, Jia, Yan, Wang, Hao, Cao, Quan, Yang, Yuanting, Zhou, Yanxiang, Tan, Tuantuan, Huang, Xin, Zhou, Qing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 3
container_start_page 402
container_title Journal of biomaterials applications
container_volume 37
creator Hu, Yugang
Jia, Yan
Wang, Hao
Cao, Quan
Yang, Yuanting
Zhou, Yanxiang
Tan, Tuantuan
Huang, Xin
Zhou, Qing
description The aim of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes myocardial cell viability in three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. Cardiomyoblasts (H9C2s) were mixed in 6% (w/v) GelMA bio-inks and printed using an extrusion-based 3D bioprinter. These scaffolds were exposed to LIPUS with different parameters or sham-irradiated to optimize the LIPUS treatment. The viability of H9C2s was measured using Cell Counting Kit-8 (CCK8), cell cycle, and live and dead cell double-staining assays. Western blot analysis was performed to determine the protein expression levels. We successfully fabricated 3D bio-printed cell-laden GelMA scaffolds. CCK8 and live and dead cell double-staining assays indicated that the optimal conditions for LIPUS were a frequency of 0.5 MHz and an exposure time of 10 min. Cell cycle analysis showed that LIPUS promoted the entry of cells into the S and G2/M phases from the G0/G1 phase. Western blot analysis revealed that LIPUS promoted the phosphorylation and activation of ERK1/2 and PI3K-Akt. The ERK1/2 inhibitor (U0126) and PI3K inhibitor (LY294002) significantly reduced LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt, respectively, which in turn reduced the LIPUS-induced viability of H9C2s in 3D bio-printed cell-laden GelMA scaffolds. A frequency of 0.5 MHz and exposure time of 10 min for LIPUS exposure can be adapted to achieve optimized culture effects on myocardial cells in 3D bio-printed cell-laden GelMA scaffolds via the ERK1/2 and PI3K-Akt signaling pathways.
doi_str_mv 10.1177/08853282221102669
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665105453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_08853282221102669</sage_id><sourcerecordid>2665105453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f51a945f5995416f0ce0e556bc9c0cf0a21ecf928c4d8235738388a2a933d1e83</originalsourceid><addsrcrecordid>eNp9kc1O5DAQhC20CGaBB-Cy8nEvAf_EGfuIhl8xEgjBOXIcG8wmcUg7oLwOT7oOA1xW2pMP_VW1qwuhQ0qOKF0uj4mUgjPJGKOUsKJQW2hBBSeZJIz9QIt5ns3ALvoJ8EwIESovdtAuF2KZK0IX6H0d3jLfRduBjxPuxwZsjccmDhrC2NW4H0IbogVsbNPgV68r38ykTjPfPfnKR8C6D30M4AEHhy_VimGjh9qHdgpmmsW-w_wUVz70Q1rmu0cMRjsXmhpmT3x7xa-zkz_xw_bs7poeM9zr-PSmJ9hH206nbx18vnvo4fzsfnWZrW8urlYn68xwyWPmBNUqF04oJXJaOGIssUIUlVGGGEc0o9Y4xaTJa8m4WCaVlJppxXlNreR76PfGN0V-GS3EsvUwp9adDSOU6cCCEpELnlC6Qc0QAAbrypSr1cNUUlLO1ZT_VJM0vz7tx6q19bfiq4sEHG0A0I-2fA7j0KW4_3H8C5Acl6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665105453</pqid></control><display><type>article</type><title>Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways</title><source>SAGE Complete A-Z List</source><creator>Hu, Yugang ; Jia, Yan ; Wang, Hao ; Cao, Quan ; Yang, Yuanting ; Zhou, Yanxiang ; Tan, Tuantuan ; Huang, Xin ; Zhou, Qing</creator><creatorcontrib>Hu, Yugang ; Jia, Yan ; Wang, Hao ; Cao, Quan ; Yang, Yuanting ; Zhou, Yanxiang ; Tan, Tuantuan ; Huang, Xin ; Zhou, Qing</creatorcontrib><description>The aim of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes myocardial cell viability in three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. Cardiomyoblasts (H9C2s) were mixed in 6% (w/v) GelMA bio-inks and printed using an extrusion-based 3D bioprinter. These scaffolds were exposed to LIPUS with different parameters or sham-irradiated to optimize the LIPUS treatment. The viability of H9C2s was measured using Cell Counting Kit-8 (CCK8), cell cycle, and live and dead cell double-staining assays. Western blot analysis was performed to determine the protein expression levels. We successfully fabricated 3D bio-printed cell-laden GelMA scaffolds. CCK8 and live and dead cell double-staining assays indicated that the optimal conditions for LIPUS were a frequency of 0.5 MHz and an exposure time of 10 min. Cell cycle analysis showed that LIPUS promoted the entry of cells into the S and G2/M phases from the G0/G1 phase. Western blot analysis revealed that LIPUS promoted the phosphorylation and activation of ERK1/2 and PI3K-Akt. The ERK1/2 inhibitor (U0126) and PI3K inhibitor (LY294002) significantly reduced LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt, respectively, which in turn reduced the LIPUS-induced viability of H9C2s in 3D bio-printed cell-laden GelMA scaffolds. A frequency of 0.5 MHz and exposure time of 10 min for LIPUS exposure can be adapted to achieve optimized culture effects on myocardial cells in 3D bio-printed cell-laden GelMA scaffolds via the ERK1/2 and PI3K-Akt signaling pathways.</description><identifier>ISSN: 0885-3282</identifier><identifier>EISSN: 1530-8022</identifier><identifier>DOI: 10.1177/08853282221102669</identifier><identifier>PMID: 35574901</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of biomaterials applications, 2022-09, Vol.37 (3), p.402-414</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-f51a945f5995416f0ce0e556bc9c0cf0a21ecf928c4d8235738388a2a933d1e83</citedby><cites>FETCH-LOGICAL-c383t-f51a945f5995416f0ce0e556bc9c0cf0a21ecf928c4d8235738388a2a933d1e83</cites><orcidid>0000-0001-9796-468X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/08853282221102669$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/08853282221102669$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35574901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yugang</creatorcontrib><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Cao, Quan</creatorcontrib><creatorcontrib>Yang, Yuanting</creatorcontrib><creatorcontrib>Zhou, Yanxiang</creatorcontrib><creatorcontrib>Tan, Tuantuan</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Zhou, Qing</creatorcontrib><title>Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways</title><title>Journal of biomaterials applications</title><addtitle>J Biomater Appl</addtitle><description>The aim of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes myocardial cell viability in three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. Cardiomyoblasts (H9C2s) were mixed in 6% (w/v) GelMA bio-inks and printed using an extrusion-based 3D bioprinter. These scaffolds were exposed to LIPUS with different parameters or sham-irradiated to optimize the LIPUS treatment. The viability of H9C2s was measured using Cell Counting Kit-8 (CCK8), cell cycle, and live and dead cell double-staining assays. Western blot analysis was performed to determine the protein expression levels. We successfully fabricated 3D bio-printed cell-laden GelMA scaffolds. CCK8 and live and dead cell double-staining assays indicated that the optimal conditions for LIPUS were a frequency of 0.5 MHz and an exposure time of 10 min. Cell cycle analysis showed that LIPUS promoted the entry of cells into the S and G2/M phases from the G0/G1 phase. Western blot analysis revealed that LIPUS promoted the phosphorylation and activation of ERK1/2 and PI3K-Akt. The ERK1/2 inhibitor (U0126) and PI3K inhibitor (LY294002) significantly reduced LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt, respectively, which in turn reduced the LIPUS-induced viability of H9C2s in 3D bio-printed cell-laden GelMA scaffolds. A frequency of 0.5 MHz and exposure time of 10 min for LIPUS exposure can be adapted to achieve optimized culture effects on myocardial cells in 3D bio-printed cell-laden GelMA scaffolds via the ERK1/2 and PI3K-Akt signaling pathways.</description><issn>0885-3282</issn><issn>1530-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O5DAQhC20CGaBB-Cy8nEvAf_EGfuIhl8xEgjBOXIcG8wmcUg7oLwOT7oOA1xW2pMP_VW1qwuhQ0qOKF0uj4mUgjPJGKOUsKJQW2hBBSeZJIz9QIt5ns3ALvoJ8EwIESovdtAuF2KZK0IX6H0d3jLfRduBjxPuxwZsjccmDhrC2NW4H0IbogVsbNPgV68r38ykTjPfPfnKR8C6D30M4AEHhy_VimGjh9qHdgpmmsW-w_wUVz70Q1rmu0cMRjsXmhpmT3x7xa-zkz_xw_bs7poeM9zr-PSmJ9hH206nbx18vnvo4fzsfnWZrW8urlYn68xwyWPmBNUqF04oJXJaOGIssUIUlVGGGEc0o9Y4xaTJa8m4WCaVlJppxXlNreR76PfGN0V-GS3EsvUwp9adDSOU6cCCEpELnlC6Qc0QAAbrypSr1cNUUlLO1ZT_VJM0vz7tx6q19bfiq4sEHG0A0I-2fA7j0KW4_3H8C5Acl6w</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Hu, Yugang</creator><creator>Jia, Yan</creator><creator>Wang, Hao</creator><creator>Cao, Quan</creator><creator>Yang, Yuanting</creator><creator>Zhou, Yanxiang</creator><creator>Tan, Tuantuan</creator><creator>Huang, Xin</creator><creator>Zhou, Qing</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9796-468X</orcidid></search><sort><creationdate>20220901</creationdate><title>Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways</title><author>Hu, Yugang ; Jia, Yan ; Wang, Hao ; Cao, Quan ; Yang, Yuanting ; Zhou, Yanxiang ; Tan, Tuantuan ; Huang, Xin ; Zhou, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f51a945f5995416f0ce0e556bc9c0cf0a21ecf928c4d8235738388a2a933d1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yugang</creatorcontrib><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Cao, Quan</creatorcontrib><creatorcontrib>Yang, Yuanting</creatorcontrib><creatorcontrib>Zhou, Yanxiang</creatorcontrib><creatorcontrib>Tan, Tuantuan</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Zhou, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomaterials applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yugang</au><au>Jia, Yan</au><au>Wang, Hao</au><au>Cao, Quan</au><au>Yang, Yuanting</au><au>Zhou, Yanxiang</au><au>Tan, Tuantuan</au><au>Huang, Xin</au><au>Zhou, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways</atitle><jtitle>Journal of biomaterials applications</jtitle><addtitle>J Biomater Appl</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>37</volume><issue>3</issue><spage>402</spage><epage>414</epage><pages>402-414</pages><issn>0885-3282</issn><eissn>1530-8022</eissn><abstract>The aim of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes myocardial cell viability in three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. Cardiomyoblasts (H9C2s) were mixed in 6% (w/v) GelMA bio-inks and printed using an extrusion-based 3D bioprinter. These scaffolds were exposed to LIPUS with different parameters or sham-irradiated to optimize the LIPUS treatment. The viability of H9C2s was measured using Cell Counting Kit-8 (CCK8), cell cycle, and live and dead cell double-staining assays. Western blot analysis was performed to determine the protein expression levels. We successfully fabricated 3D bio-printed cell-laden GelMA scaffolds. CCK8 and live and dead cell double-staining assays indicated that the optimal conditions for LIPUS were a frequency of 0.5 MHz and an exposure time of 10 min. Cell cycle analysis showed that LIPUS promoted the entry of cells into the S and G2/M phases from the G0/G1 phase. Western blot analysis revealed that LIPUS promoted the phosphorylation and activation of ERK1/2 and PI3K-Akt. The ERK1/2 inhibitor (U0126) and PI3K inhibitor (LY294002) significantly reduced LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt, respectively, which in turn reduced the LIPUS-induced viability of H9C2s in 3D bio-printed cell-laden GelMA scaffolds. A frequency of 0.5 MHz and exposure time of 10 min for LIPUS exposure can be adapted to achieve optimized culture effects on myocardial cells in 3D bio-printed cell-laden GelMA scaffolds via the ERK1/2 and PI3K-Akt signaling pathways.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>35574901</pmid><doi>10.1177/08853282221102669</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9796-468X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-3282
ispartof Journal of biomaterials applications, 2022-09, Vol.37 (3), p.402-414
issn 0885-3282
1530-8022
language eng
recordid cdi_proquest_miscellaneous_2665105453
source SAGE Complete A-Z List
title Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-intensity%20pulsed%20ultrasound%20promotes%20cell%20viability%20and%20inhibits%20apoptosis%20of%20H9C2%20cardiomyocytes%20in%203D%20bioprinting%20scaffolds%20via%20PI3K-Akt%20and%20ERK1/2%20pathways&rft.jtitle=Journal%20of%20biomaterials%20applications&rft.au=Hu,%20Yugang&rft.date=2022-09-01&rft.volume=37&rft.issue=3&rft.spage=402&rft.epage=414&rft.pages=402-414&rft.issn=0885-3282&rft.eissn=1530-8022&rft_id=info:doi/10.1177/08853282221102669&rft_dat=%3Cproquest_cross%3E2665105453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665105453&rft_id=info:pmid/35574901&rft_sage_id=10.1177_08853282221102669&rfr_iscdi=true