CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY

This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Water Resources Association 2001-04, Vol.37 (2), p.271-279
Hauptverfasser: Lisi, Francesco, Villi, Vigilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 2
container_start_page 271
container_title Journal of the American Water Resources Association
container_volume 37
creator Lisi, Francesco
Villi, Vigilio
description This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions.
doi_str_mv 10.1111/j.1752-1688.2001.tb00967.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26648366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>308250549</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-5a97ffcce3b504c8dae59462d9b1ed60633d21a93bb31637756c98f00306212d3</originalsourceid><addsrcrecordid>eNo9jdtqg0AURYfSQtO0_yAt9E07F-eWNzHGSNNIo6GXFxl1BNPc6hhI_74DCTkvZx_WYh8AHhH0kJ2XlYc4xS5iQngYQuT1JYSSce94BQYXdG0zlMT1uf95C-6MWVmVIkEGYBROgzRPQmeSLqIwyPJkHjvpxBknmSWLOHLy5C1ysmiRRNnICRzr2DNfjr_uwU2j1kY_nPcQLCdRHk7dWRonYTBzW0xh71IledNUlSYlhX4laqWp9BmuZYl0zSAjpMZISVKWBDHCOWWVFA2EBDKMcE2G4PnUu-92vwdt-mLTmkqv12qrdwdTYMZ8QRiz4tNZVKZS66ZT26o1xb5rN6r7K6RgxD4bAvdktabXxwtV3U_BOOG0-JjHhS9pyMXre_FN_gHbjWH1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26648366</pqid></control><display><type>article</type><title>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lisi, Francesco ; Villi, Vigilio</creator><creatorcontrib>Lisi, Francesco ; Villi, Vigilio</creatorcontrib><description>This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/j.1752-1688.2001.tb00967.x</identifier><identifier>CODEN: JWRAF5</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>chaos ; Chaos theory ; Correlation ; Dimensions ; Discharge ; Dynamics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Forecasting ; Hydrology ; Hydrology. Hydrogeology ; Mathematical models ; nonlinear prediction ; Resources ; River flow ; Rivers ; time series</subject><ispartof>Journal of the American Water Resources Association, 2001-04, Vol.37 (2), p.271-279</ispartof><rights>2001 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=986363$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lisi, Francesco</creatorcontrib><creatorcontrib>Villi, Vigilio</creatorcontrib><title>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</title><title>Journal of the American Water Resources Association</title><description>This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions.</description><subject>chaos</subject><subject>Chaos theory</subject><subject>Correlation</subject><subject>Dimensions</subject><subject>Discharge</subject><subject>Dynamics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Mathematical models</subject><subject>nonlinear prediction</subject><subject>Resources</subject><subject>River flow</subject><subject>Rivers</subject><subject>time series</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9jdtqg0AURYfSQtO0_yAt9E07F-eWNzHGSNNIo6GXFxl1BNPc6hhI_74DCTkvZx_WYh8AHhH0kJ2XlYc4xS5iQngYQuT1JYSSce94BQYXdG0zlMT1uf95C-6MWVmVIkEGYBROgzRPQmeSLqIwyPJkHjvpxBknmSWLOHLy5C1ysmiRRNnICRzr2DNfjr_uwU2j1kY_nPcQLCdRHk7dWRonYTBzW0xh71IledNUlSYlhX4laqWp9BmuZYl0zSAjpMZISVKWBDHCOWWVFA2EBDKMcE2G4PnUu-92vwdt-mLTmkqv12qrdwdTYMZ8QRiz4tNZVKZS66ZT26o1xb5rN6r7K6RgxD4bAvdktabXxwtV3U_BOOG0-JjHhS9pyMXre_FN_gHbjWH1</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Lisi, Francesco</creator><creator>Villi, Vigilio</creator><general>Blackwell Publishing Ltd</general><general>American Water Resources Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20010401</creationdate><title>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</title><author>Lisi, Francesco ; Villi, Vigilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-5a97ffcce3b504c8dae59462d9b1ed60633d21a93bb31637756c98f00306212d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>chaos</topic><topic>Chaos theory</topic><topic>Correlation</topic><topic>Dimensions</topic><topic>Discharge</topic><topic>Dynamics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Mathematical models</topic><topic>nonlinear prediction</topic><topic>Resources</topic><topic>River flow</topic><topic>Rivers</topic><topic>time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Lisi, Francesco</creatorcontrib><creatorcontrib>Villi, Vigilio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisi, Francesco</au><au>Villi, Vigilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</atitle><jtitle>Journal of the American Water Resources Association</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>37</volume><issue>2</issue><spage>271</spage><epage>279</epage><pages>271-279</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><coden>JWRAF5</coden><abstract>This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1752-1688.2001.tb00967.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-474X
ispartof Journal of the American Water Resources Association, 2001-04, Vol.37 (2), p.271-279
issn 1093-474X
1752-1688
language eng
recordid cdi_proquest_miscellaneous_26648366
source Wiley Online Library Journals Frontfile Complete
subjects chaos
Chaos theory
Correlation
Dimensions
Discharge
Dynamics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Forecasting
Hydrology
Hydrology. Hydrogeology
Mathematical models
nonlinear prediction
Resources
River flow
Rivers
time series
title CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHAOTIC%20FORECASTING%20OF%20DISCHARGE%20TIME%20SERIES:%20A%20CASE%20STUDY&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Lisi,%20Francesco&rft.date=2001-04-01&rft.volume=37&rft.issue=2&rft.spage=271&rft.epage=279&rft.pages=271-279&rft.issn=1093-474X&rft.eissn=1752-1688&rft.coden=JWRAF5&rft_id=info:doi/10.1111/j.1752-1688.2001.tb00967.x&rft_dat=%3Cproquest_pasca%3E308250549%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26648366&rft_id=info:pmid/&rfr_iscdi=true