CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY
This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correla...
Gespeichert in:
Veröffentlicht in: | Journal of the American Water Resources Association 2001-04, Vol.37 (2), p.271-279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | Journal of the American Water Resources Association |
container_volume | 37 |
creator | Lisi, Francesco Villi, Vigilio |
description | This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions. |
doi_str_mv | 10.1111/j.1752-1688.2001.tb00967.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26648366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>308250549</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-5a97ffcce3b504c8dae59462d9b1ed60633d21a93bb31637756c98f00306212d3</originalsourceid><addsrcrecordid>eNo9jdtqg0AURYfSQtO0_yAt9E07F-eWNzHGSNNIo6GXFxl1BNPc6hhI_74DCTkvZx_WYh8AHhH0kJ2XlYc4xS5iQngYQuT1JYSSce94BQYXdG0zlMT1uf95C-6MWVmVIkEGYBROgzRPQmeSLqIwyPJkHjvpxBknmSWLOHLy5C1ysmiRRNnICRzr2DNfjr_uwU2j1kY_nPcQLCdRHk7dWRonYTBzW0xh71IledNUlSYlhX4laqWp9BmuZYl0zSAjpMZISVKWBDHCOWWVFA2EBDKMcE2G4PnUu-92vwdt-mLTmkqv12qrdwdTYMZ8QRiz4tNZVKZS66ZT26o1xb5rN6r7K6RgxD4bAvdktabXxwtV3U_BOOG0-JjHhS9pyMXre_FN_gHbjWH1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26648366</pqid></control><display><type>article</type><title>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lisi, Francesco ; Villi, Vigilio</creator><creatorcontrib>Lisi, Francesco ; Villi, Vigilio</creatorcontrib><description>This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/j.1752-1688.2001.tb00967.x</identifier><identifier>CODEN: JWRAF5</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>chaos ; Chaos theory ; Correlation ; Dimensions ; Discharge ; Dynamics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Forecasting ; Hydrology ; Hydrology. Hydrogeology ; Mathematical models ; nonlinear prediction ; Resources ; River flow ; Rivers ; time series</subject><ispartof>Journal of the American Water Resources Association, 2001-04, Vol.37 (2), p.271-279</ispartof><rights>2001 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=986363$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lisi, Francesco</creatorcontrib><creatorcontrib>Villi, Vigilio</creatorcontrib><title>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</title><title>Journal of the American Water Resources Association</title><description>This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions.</description><subject>chaos</subject><subject>Chaos theory</subject><subject>Correlation</subject><subject>Dimensions</subject><subject>Discharge</subject><subject>Dynamics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Mathematical models</subject><subject>nonlinear prediction</subject><subject>Resources</subject><subject>River flow</subject><subject>Rivers</subject><subject>time series</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9jdtqg0AURYfSQtO0_yAt9E07F-eWNzHGSNNIo6GXFxl1BNPc6hhI_74DCTkvZx_WYh8AHhH0kJ2XlYc4xS5iQngYQuT1JYSSce94BQYXdG0zlMT1uf95C-6MWVmVIkEGYBROgzRPQmeSLqIwyPJkHjvpxBknmSWLOHLy5C1ysmiRRNnICRzr2DNfjr_uwU2j1kY_nPcQLCdRHk7dWRonYTBzW0xh71IledNUlSYlhX4laqWp9BmuZYl0zSAjpMZISVKWBDHCOWWVFA2EBDKMcE2G4PnUu-92vwdt-mLTmkqv12qrdwdTYMZ8QRiz4tNZVKZS66ZT26o1xb5rN6r7K6RgxD4bAvdktabXxwtV3U_BOOG0-JjHhS9pyMXre_FN_gHbjWH1</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Lisi, Francesco</creator><creator>Villi, Vigilio</creator><general>Blackwell Publishing Ltd</general><general>American Water Resources Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20010401</creationdate><title>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</title><author>Lisi, Francesco ; Villi, Vigilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-5a97ffcce3b504c8dae59462d9b1ed60633d21a93bb31637756c98f00306212d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>chaos</topic><topic>Chaos theory</topic><topic>Correlation</topic><topic>Dimensions</topic><topic>Discharge</topic><topic>Dynamics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Mathematical models</topic><topic>nonlinear prediction</topic><topic>Resources</topic><topic>River flow</topic><topic>Rivers</topic><topic>time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Lisi, Francesco</creatorcontrib><creatorcontrib>Villi, Vigilio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisi, Francesco</au><au>Villi, Vigilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY</atitle><jtitle>Journal of the American Water Resources Association</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>37</volume><issue>2</issue><spage>271</spage><epage>279</epage><pages>271-279</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><coden>JWRAF5</coden><abstract>This paper considers the problem of forecasting the discharge time series of a river by means of a chaotic approach. To this aim, we first check for some evidence of chaotic behavior in the dynamic by considering a set of different procedures, namely, the phase portrait of the attractor, the correlation dimension, and the largest Lyapunov exponent. Their joint application seems to confirm the presence of a nonlinear deterministic dynamic of chaotic type. Second, we consider the so-called nearest neighbors predictor and we compare it with a classical linear model. By comparing these two predictors, it seems that nonlinear river flow modeling, and in particular chaotic modeling, is an effective method to improve predictions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1752-1688.2001.tb00967.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-474X |
ispartof | Journal of the American Water Resources Association, 2001-04, Vol.37 (2), p.271-279 |
issn | 1093-474X 1752-1688 |
language | eng |
recordid | cdi_proquest_miscellaneous_26648366 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | chaos Chaos theory Correlation Dimensions Discharge Dynamics Earth sciences Earth, ocean, space Exact sciences and technology Forecasting Hydrology Hydrology. Hydrogeology Mathematical models nonlinear prediction Resources River flow Rivers time series |
title | CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHAOTIC%20FORECASTING%20OF%20DISCHARGE%20TIME%20SERIES:%20A%20CASE%20STUDY&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Lisi,%20Francesco&rft.date=2001-04-01&rft.volume=37&rft.issue=2&rft.spage=271&rft.epage=279&rft.pages=271-279&rft.issn=1093-474X&rft.eissn=1752-1688&rft.coden=JWRAF5&rft_id=info:doi/10.1111/j.1752-1688.2001.tb00967.x&rft_dat=%3Cproquest_pasca%3E308250549%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26648366&rft_id=info:pmid/&rfr_iscdi=true |