NIR‐II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy
Despite the success of emissive Ruthenium (Ru) agents in biomedicine, problems such as the visible‐light excitation/emission and single chemo‐ or phototherapy modality still hamper their applications in deep‐tissue imaging and efficient cancer therapy. Herein, an second nearinfrared window (NIR‐II)...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-06, Vol.18 (23), p.e2201625-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2201625 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Fan, Yifan Li, Chonglu Bai, Suya Ma, Xin Yang, Jingfang Guan, Xiaofang Sun, Yao |
description | Despite the success of emissive Ruthenium (Ru) agents in biomedicine, problems such as the visible‐light excitation/emission and single chemo‐ or phototherapy modality still hamper their applications in deep‐tissue imaging and efficient cancer therapy. Herein, an second nearinfrared window (NIR‐II) emissive Ru(II) metallacycle (Ru1000, λem = 1000 nm) via coordination‐driven self‐assembly is reported, which holds remarkable deep‐tissue imaging capability (≈6 mm) and satisfactory chemo‐phototherapeutic performance. In vitro results indicate Ru1000 displays promising cellular uptake, good cancer‐cell selectivity, attractive anti‐metastasis properties, and remarkable anticancer activity against various cancer cells, including cisplatin‐resistant A549 cells (IC50 = 3.4 × 10−6 m vs 92.8 × 10−6 m for cisplatin). The antitumor mechanism could be attributed to Ru1000‐induced lysosomal membrane damage and mitochondrial‐mediated apoptotic cell death. Furthermore, Ru1000 also allows the high‐performance in vivo NIR‐II fluorescence imaging‐guided chemo‐phototherapy against A549 tumors. This work may provide a paradigm for the development of long‐wavelength emissive metallacycle‐based agents for future biomedicine.
Herein, an second nearinfrared window (NIR‐II) emissive Ruthenium (Ru) metallacycle (Ru1000) that holds excellent deep‐tissue penetration capability and satisfactory chemo‐phototherapeutic performance is reported. Ru1100 exhibits promising broad‐spectrum anticancer activity in vitro. Moreover, Ru1100 also allows for in vivo high‐performance fluorescence imaging‐guided precise chemo‐phototherapy in A549 tumor models. These findings provide a paradigm for the development of long‐wavelength emissive metal‐based theranostic agents. |
doi_str_mv | 10.1002/smll.202201625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2664796468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664796468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-262a735d9e59d3f6fdb5b358dd94a83be1c4f5bf52124569337deaa8c12fcead3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0Eory2LFEkNmXR4kfsxMuqKhCpgARFLCPHnpRUeRS7AXXHJ_CNfAmuWorEhtWMZs5c3bkInRLcJxjTS1eVZZ9iSjERlO-gAyII64mYyt1tT3AHHTo3w5gRGkb7qMM4FziKyAF6vksevj4-kyQYVYVzxRsED203SS6CW1ioslR6qUsIBn7lFkU9Da7KtrHgNNQagqRS09VQ1SYYKj-xweQFrJovj9FerkoHJ5t6hJ6uRpPhTW98f50MB-OeZhHjPSqo8tVI4NKwXOQm4xnjsTEyVDHLgOgw51nOqXfOhWQsMqBUrAnNNSjDjlB3rTu3zWsLbpH6NzR44zU0rUupEGEkRShij57_QWdNa2vvzlNRSKQgVHqqv6a0bZyzkKdzW1TKLlOC01Xk6SrydBu5PzjbyLZZBWaL_2TsAbkG3osSlv_IpY-34_Gv-DczRo1J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674196129</pqid></control><display><type>article</type><title>NIR‐II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fan, Yifan ; Li, Chonglu ; Bai, Suya ; Ma, Xin ; Yang, Jingfang ; Guan, Xiaofang ; Sun, Yao</creator><creatorcontrib>Fan, Yifan ; Li, Chonglu ; Bai, Suya ; Ma, Xin ; Yang, Jingfang ; Guan, Xiaofang ; Sun, Yao</creatorcontrib><description>Despite the success of emissive Ruthenium (Ru) agents in biomedicine, problems such as the visible‐light excitation/emission and single chemo‐ or phototherapy modality still hamper their applications in deep‐tissue imaging and efficient cancer therapy. Herein, an second nearinfrared window (NIR‐II) emissive Ru(II) metallacycle (Ru1000, λem = 1000 nm) via coordination‐driven self‐assembly is reported, which holds remarkable deep‐tissue imaging capability (≈6 mm) and satisfactory chemo‐phototherapeutic performance. In vitro results indicate Ru1000 displays promising cellular uptake, good cancer‐cell selectivity, attractive anti‐metastasis properties, and remarkable anticancer activity against various cancer cells, including cisplatin‐resistant A549 cells (IC50 = 3.4 × 10−6 m vs 92.8 × 10−6 m for cisplatin). The antitumor mechanism could be attributed to Ru1000‐induced lysosomal membrane damage and mitochondrial‐mediated apoptotic cell death. Furthermore, Ru1000 also allows the high‐performance in vivo NIR‐II fluorescence imaging‐guided chemo‐phototherapy against A549 tumors. This work may provide a paradigm for the development of long‐wavelength emissive metallacycle‐based agents for future biomedicine.
Herein, an second nearinfrared window (NIR‐II) emissive Ruthenium (Ru) metallacycle (Ru1000) that holds excellent deep‐tissue penetration capability and satisfactory chemo‐phototherapeutic performance is reported. Ru1100 exhibits promising broad‐spectrum anticancer activity in vitro. Moreover, Ru1100 also allows for in vivo high‐performance fluorescence imaging‐guided precise chemo‐phototherapy in A549 tumor models. These findings provide a paradigm for the development of long‐wavelength emissive metal‐based theranostic agents.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202201625</identifier><identifier>PMID: 35560771</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anticancer properties ; Biomedical materials ; cancer theranostics ; Cancer therapies ; Cell death ; Cisplatin - pharmacology ; Emissivity ; Fluorescence ; Imaging ; Light therapy ; metallacycles ; Nanotechnology ; Neoplasms - diagnostic imaging ; Neoplasms - drug therapy ; NIR‐II ; Optical Imaging ; Organometallic compounds ; Phototherapy - methods ; Ruthenium ; Selectivity ; self‐assembly ; Theranostic Nanomedicine - methods</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (23), p.e2201625-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-262a735d9e59d3f6fdb5b358dd94a83be1c4f5bf52124569337deaa8c12fcead3</citedby><cites>FETCH-LOGICAL-c3735-262a735d9e59d3f6fdb5b358dd94a83be1c4f5bf52124569337deaa8c12fcead3</cites><orcidid>0000-0002-6519-7436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202201625$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202201625$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35560771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Yifan</creatorcontrib><creatorcontrib>Li, Chonglu</creatorcontrib><creatorcontrib>Bai, Suya</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Yang, Jingfang</creatorcontrib><creatorcontrib>Guan, Xiaofang</creatorcontrib><creatorcontrib>Sun, Yao</creatorcontrib><title>NIR‐II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Despite the success of emissive Ruthenium (Ru) agents in biomedicine, problems such as the visible‐light excitation/emission and single chemo‐ or phototherapy modality still hamper their applications in deep‐tissue imaging and efficient cancer therapy. Herein, an second nearinfrared window (NIR‐II) emissive Ru(II) metallacycle (Ru1000, λem = 1000 nm) via coordination‐driven self‐assembly is reported, which holds remarkable deep‐tissue imaging capability (≈6 mm) and satisfactory chemo‐phototherapeutic performance. In vitro results indicate Ru1000 displays promising cellular uptake, good cancer‐cell selectivity, attractive anti‐metastasis properties, and remarkable anticancer activity against various cancer cells, including cisplatin‐resistant A549 cells (IC50 = 3.4 × 10−6 m vs 92.8 × 10−6 m for cisplatin). The antitumor mechanism could be attributed to Ru1000‐induced lysosomal membrane damage and mitochondrial‐mediated apoptotic cell death. Furthermore, Ru1000 also allows the high‐performance in vivo NIR‐II fluorescence imaging‐guided chemo‐phototherapy against A549 tumors. This work may provide a paradigm for the development of long‐wavelength emissive metallacycle‐based agents for future biomedicine.
Herein, an second nearinfrared window (NIR‐II) emissive Ruthenium (Ru) metallacycle (Ru1000) that holds excellent deep‐tissue penetration capability and satisfactory chemo‐phototherapeutic performance is reported. Ru1100 exhibits promising broad‐spectrum anticancer activity in vitro. Moreover, Ru1100 also allows for in vivo high‐performance fluorescence imaging‐guided precise chemo‐phototherapy in A549 tumor models. These findings provide a paradigm for the development of long‐wavelength emissive metal‐based theranostic agents.</description><subject>Anticancer properties</subject><subject>Biomedical materials</subject><subject>cancer theranostics</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Cisplatin - pharmacology</subject><subject>Emissivity</subject><subject>Fluorescence</subject><subject>Imaging</subject><subject>Light therapy</subject><subject>metallacycles</subject><subject>Nanotechnology</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - drug therapy</subject><subject>NIR‐II</subject><subject>Optical Imaging</subject><subject>Organometallic compounds</subject><subject>Phototherapy - methods</subject><subject>Ruthenium</subject><subject>Selectivity</subject><subject>self‐assembly</subject><subject>Theranostic Nanomedicine - methods</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0Eory2LFEkNmXR4kfsxMuqKhCpgARFLCPHnpRUeRS7AXXHJ_CNfAmuWorEhtWMZs5c3bkInRLcJxjTS1eVZZ9iSjERlO-gAyII64mYyt1tT3AHHTo3w5gRGkb7qMM4FziKyAF6vksevj4-kyQYVYVzxRsED203SS6CW1ioslR6qUsIBn7lFkU9Da7KtrHgNNQagqRS09VQ1SYYKj-xweQFrJovj9FerkoHJ5t6hJ6uRpPhTW98f50MB-OeZhHjPSqo8tVI4NKwXOQm4xnjsTEyVDHLgOgw51nOqXfOhWQsMqBUrAnNNSjDjlB3rTu3zWsLbpH6NzR44zU0rUupEGEkRShij57_QWdNa2vvzlNRSKQgVHqqv6a0bZyzkKdzW1TKLlOC01Xk6SrydBu5PzjbyLZZBWaL_2TsAbkG3osSlv_IpY-34_Gv-DczRo1J</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fan, Yifan</creator><creator>Li, Chonglu</creator><creator>Bai, Suya</creator><creator>Ma, Xin</creator><creator>Yang, Jingfang</creator><creator>Guan, Xiaofang</creator><creator>Sun, Yao</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6519-7436</orcidid></search><sort><creationdate>20220601</creationdate><title>NIR‐II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy</title><author>Fan, Yifan ; Li, Chonglu ; Bai, Suya ; Ma, Xin ; Yang, Jingfang ; Guan, Xiaofang ; Sun, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-262a735d9e59d3f6fdb5b358dd94a83be1c4f5bf52124569337deaa8c12fcead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anticancer properties</topic><topic>Biomedical materials</topic><topic>cancer theranostics</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Cisplatin - pharmacology</topic><topic>Emissivity</topic><topic>Fluorescence</topic><topic>Imaging</topic><topic>Light therapy</topic><topic>metallacycles</topic><topic>Nanotechnology</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - drug therapy</topic><topic>NIR‐II</topic><topic>Optical Imaging</topic><topic>Organometallic compounds</topic><topic>Phototherapy - methods</topic><topic>Ruthenium</topic><topic>Selectivity</topic><topic>self‐assembly</topic><topic>Theranostic Nanomedicine - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yifan</creatorcontrib><creatorcontrib>Li, Chonglu</creatorcontrib><creatorcontrib>Bai, Suya</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Yang, Jingfang</creatorcontrib><creatorcontrib>Guan, Xiaofang</creatorcontrib><creatorcontrib>Sun, Yao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yifan</au><au>Li, Chonglu</au><au>Bai, Suya</au><au>Ma, Xin</au><au>Yang, Jingfang</au><au>Guan, Xiaofang</au><au>Sun, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NIR‐II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>23</issue><spage>e2201625</spage><epage>n/a</epage><pages>e2201625-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Despite the success of emissive Ruthenium (Ru) agents in biomedicine, problems such as the visible‐light excitation/emission and single chemo‐ or phototherapy modality still hamper their applications in deep‐tissue imaging and efficient cancer therapy. Herein, an second nearinfrared window (NIR‐II) emissive Ru(II) metallacycle (Ru1000, λem = 1000 nm) via coordination‐driven self‐assembly is reported, which holds remarkable deep‐tissue imaging capability (≈6 mm) and satisfactory chemo‐phototherapeutic performance. In vitro results indicate Ru1000 displays promising cellular uptake, good cancer‐cell selectivity, attractive anti‐metastasis properties, and remarkable anticancer activity against various cancer cells, including cisplatin‐resistant A549 cells (IC50 = 3.4 × 10−6 m vs 92.8 × 10−6 m for cisplatin). The antitumor mechanism could be attributed to Ru1000‐induced lysosomal membrane damage and mitochondrial‐mediated apoptotic cell death. Furthermore, Ru1000 also allows the high‐performance in vivo NIR‐II fluorescence imaging‐guided chemo‐phototherapy against A549 tumors. This work may provide a paradigm for the development of long‐wavelength emissive metallacycle‐based agents for future biomedicine.
Herein, an second nearinfrared window (NIR‐II) emissive Ruthenium (Ru) metallacycle (Ru1000) that holds excellent deep‐tissue penetration capability and satisfactory chemo‐phototherapeutic performance is reported. Ru1100 exhibits promising broad‐spectrum anticancer activity in vitro. Moreover, Ru1100 also allows for in vivo high‐performance fluorescence imaging‐guided precise chemo‐phototherapy in A549 tumor models. These findings provide a paradigm for the development of long‐wavelength emissive metal‐based theranostic agents.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35560771</pmid><doi>10.1002/smll.202201625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6519-7436</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (23), p.e2201625-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2664796468 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anticancer properties Biomedical materials cancer theranostics Cancer therapies Cell death Cisplatin - pharmacology Emissivity Fluorescence Imaging Light therapy metallacycles Nanotechnology Neoplasms - diagnostic imaging Neoplasms - drug therapy NIR‐II Optical Imaging Organometallic compounds Phototherapy - methods Ruthenium Selectivity self‐assembly Theranostic Nanomedicine - methods |
title | NIR‐II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NIR%E2%80%90II%20Emissive%20Ru(II)%20Metallacycle%20Assisting%20Fluorescence%20Imaging%20and%20Cancer%20Therapy&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Fan,%20Yifan&rft.date=2022-06-01&rft.volume=18&rft.issue=23&rft.spage=e2201625&rft.epage=n/a&rft.pages=e2201625-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202201625&rft_dat=%3Cproquest_cross%3E2664796468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674196129&rft_id=info:pmid/35560771&rfr_iscdi=true |