Pathways to polar adaptation in fishes revealed by long‐read sequencing

Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2023-03, Vol.32 (6), p.1381-1397
Hauptverfasser: Hotaling, Scott, Desvignes, Thomas, Sproul, John S., Lins, Luana S. F., Kelley, Joanna L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue 6
container_start_page 1381
container_title Molecular ecology
container_volume 32
creator Hotaling, Scott
Desvignes, Thomas
Sproul, John S.
Lins, Luana S. F.
Kelley, Joanna L.
description Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution.
doi_str_mv 10.1111/mec.16501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2664795731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783775784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQC0EoqUw8APIEgsMaf2IHxlRVaBSEQwd2CwncdtUeWEnVNn4BL6RL8GQwoDEXe5ydO7VAeAcozH2MylMMsacIXwAhphyFpAofD4EQxRxEmAk6QCcOLdFCFPC2DEYUMY4RggNwfxJN5ud7hxsKlhXubZQp7pudJNVJcxKuMrcxjhozavRuUlh3MG8Ktcfb-_W6BQ689KaMsnK9Sk4WuncmbP9HoHl7Ww5vQ8Wj3fz6c0iSKiUOAhlHLI44kiKUBgZpkjyGBkSSaI15yFDAosw0owzhrRkQhOBEU7ilNOIRHQErnptbSt_2jWqyFxi8lyXpmqdIt4hIiYo9ujlH3Rbtbb0zykiJBWCCRl66rqnEls5Z81K1TYrtO0URuorr_J51Xdez17sjW1cmPSX_OnpgUkP7LLcdP-b1MNs2is_AYryge0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783775784</pqid></control><display><type>article</type><title>Pathways to polar adaptation in fishes revealed by long‐read sequencing</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Hotaling, Scott ; Desvignes, Thomas ; Sproul, John S. ; Lins, Luana S. F. ; Kelley, Joanna L.</creator><creatorcontrib>Hotaling, Scott ; Desvignes, Thomas ; Sproul, John S. ; Lins, Luana S. F. ; Kelley, Joanna L.</creatorcontrib><description>Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.16501</identifier><identifier>PMID: 35561000</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acclimatization ; Adaptation ; Adaptation, Physiological - genetics ; Animals ; Antifreeze proteins ; Assemblies ; Assembly ; Clusters ; cold adaptation ; Environmental changes ; Evolution ; extremophile ; Fishes - genetics ; Gene sequencing ; genome biology ; Genomes ; Genomics ; Hemoglobin ; Hemoglobins ; Membrane structure ; Membrane structures ; Ophthalmolycus amberensis ; Perciformes - genetics ; Polar environments ; polar fish ; Positive selection ; Southern Ocean ; Temperature tolerance ; Thermal stress ; Zoarcoidei</subject><ispartof>Molecular ecology, 2023-03, Vol.32 (6), p.1381-1397</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Molecular Ecology published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</citedby><cites>FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</cites><orcidid>0000-0002-7731-605X ; 0000-0002-6747-3537 ; 0000-0001-5126-8785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.16501$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.16501$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35561000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hotaling, Scott</creatorcontrib><creatorcontrib>Desvignes, Thomas</creatorcontrib><creatorcontrib>Sproul, John S.</creatorcontrib><creatorcontrib>Lins, Luana S. F.</creatorcontrib><creatorcontrib>Kelley, Joanna L.</creatorcontrib><title>Pathways to polar adaptation in fishes revealed by long‐read sequencing</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution.</description><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Animals</subject><subject>Antifreeze proteins</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Clusters</subject><subject>cold adaptation</subject><subject>Environmental changes</subject><subject>Evolution</subject><subject>extremophile</subject><subject>Fishes - genetics</subject><subject>Gene sequencing</subject><subject>genome biology</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hemoglobin</subject><subject>Hemoglobins</subject><subject>Membrane structure</subject><subject>Membrane structures</subject><subject>Ophthalmolycus amberensis</subject><subject>Perciformes - genetics</subject><subject>Polar environments</subject><subject>polar fish</subject><subject>Positive selection</subject><subject>Southern Ocean</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>Zoarcoidei</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUQC0EoqUw8APIEgsMaf2IHxlRVaBSEQwd2CwncdtUeWEnVNn4BL6RL8GQwoDEXe5ydO7VAeAcozH2MylMMsacIXwAhphyFpAofD4EQxRxEmAk6QCcOLdFCFPC2DEYUMY4RggNwfxJN5ud7hxsKlhXubZQp7pudJNVJcxKuMrcxjhozavRuUlh3MG8Ktcfb-_W6BQ689KaMsnK9Sk4WuncmbP9HoHl7Ww5vQ8Wj3fz6c0iSKiUOAhlHLI44kiKUBgZpkjyGBkSSaI15yFDAosw0owzhrRkQhOBEU7ilNOIRHQErnptbSt_2jWqyFxi8lyXpmqdIt4hIiYo9ujlH3Rbtbb0zykiJBWCCRl66rqnEls5Z81K1TYrtO0URuorr_J51Xdez17sjW1cmPSX_OnpgUkP7LLcdP-b1MNs2is_AYryge0</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Hotaling, Scott</creator><creator>Desvignes, Thomas</creator><creator>Sproul, John S.</creator><creator>Lins, Luana S. F.</creator><creator>Kelley, Joanna L.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7731-605X</orcidid><orcidid>https://orcid.org/0000-0002-6747-3537</orcidid><orcidid>https://orcid.org/0000-0001-5126-8785</orcidid></search><sort><creationdate>202303</creationdate><title>Pathways to polar adaptation in fishes revealed by long‐read sequencing</title><author>Hotaling, Scott ; Desvignes, Thomas ; Sproul, John S. ; Lins, Luana S. F. ; Kelley, Joanna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Animals</topic><topic>Antifreeze proteins</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Clusters</topic><topic>cold adaptation</topic><topic>Environmental changes</topic><topic>Evolution</topic><topic>extremophile</topic><topic>Fishes - genetics</topic><topic>Gene sequencing</topic><topic>genome biology</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hemoglobin</topic><topic>Hemoglobins</topic><topic>Membrane structure</topic><topic>Membrane structures</topic><topic>Ophthalmolycus amberensis</topic><topic>Perciformes - genetics</topic><topic>Polar environments</topic><topic>polar fish</topic><topic>Positive selection</topic><topic>Southern Ocean</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>Zoarcoidei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hotaling, Scott</creatorcontrib><creatorcontrib>Desvignes, Thomas</creatorcontrib><creatorcontrib>Sproul, John S.</creatorcontrib><creatorcontrib>Lins, Luana S. F.</creatorcontrib><creatorcontrib>Kelley, Joanna L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hotaling, Scott</au><au>Desvignes, Thomas</au><au>Sproul, John S.</au><au>Lins, Luana S. F.</au><au>Kelley, Joanna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathways to polar adaptation in fishes revealed by long‐read sequencing</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2023-03</date><risdate>2023</risdate><volume>32</volume><issue>6</issue><spage>1381</spage><epage>1397</epage><pages>1381-1397</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>35561000</pmid><doi>10.1111/mec.16501</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7731-605X</orcidid><orcidid>https://orcid.org/0000-0002-6747-3537</orcidid><orcidid>https://orcid.org/0000-0001-5126-8785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2023-03, Vol.32 (6), p.1381-1397
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_2664795731
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Acclimatization
Adaptation
Adaptation, Physiological - genetics
Animals
Antifreeze proteins
Assemblies
Assembly
Clusters
cold adaptation
Environmental changes
Evolution
extremophile
Fishes - genetics
Gene sequencing
genome biology
Genomes
Genomics
Hemoglobin
Hemoglobins
Membrane structure
Membrane structures
Ophthalmolycus amberensis
Perciformes - genetics
Polar environments
polar fish
Positive selection
Southern Ocean
Temperature tolerance
Thermal stress
Zoarcoidei
title Pathways to polar adaptation in fishes revealed by long‐read sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathways%20to%20polar%20adaptation%20in%20fishes%20revealed%20by%20long%E2%80%90read%20sequencing&rft.jtitle=Molecular%20ecology&rft.au=Hotaling,%20Scott&rft.date=2023-03&rft.volume=32&rft.issue=6&rft.spage=1381&rft.epage=1397&rft.pages=1381-1397&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.16501&rft_dat=%3Cproquest_cross%3E2783775784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783775784&rft_id=info:pmid/35561000&rfr_iscdi=true