Pathways to polar adaptation in fishes revealed by long‐read sequencing
Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often dif...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2023-03, Vol.32 (6), p.1381-1397 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1397 |
---|---|
container_issue | 6 |
container_start_page | 1381 |
container_title | Molecular ecology |
container_volume | 32 |
creator | Hotaling, Scott Desvignes, Thomas Sproul, John S. Lins, Luana S. F. Kelley, Joanna L. |
description | Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution. |
doi_str_mv | 10.1111/mec.16501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2664795731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783775784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQC0EoqUw8APIEgsMaf2IHxlRVaBSEQwd2CwncdtUeWEnVNn4BL6RL8GQwoDEXe5ydO7VAeAcozH2MylMMsacIXwAhphyFpAofD4EQxRxEmAk6QCcOLdFCFPC2DEYUMY4RggNwfxJN5ud7hxsKlhXubZQp7pudJNVJcxKuMrcxjhozavRuUlh3MG8Ktcfb-_W6BQ689KaMsnK9Sk4WuncmbP9HoHl7Ww5vQ8Wj3fz6c0iSKiUOAhlHLI44kiKUBgZpkjyGBkSSaI15yFDAosw0owzhrRkQhOBEU7ilNOIRHQErnptbSt_2jWqyFxi8lyXpmqdIt4hIiYo9ujlH3Rbtbb0zykiJBWCCRl66rqnEls5Z81K1TYrtO0URuorr_J51Xdez17sjW1cmPSX_OnpgUkP7LLcdP-b1MNs2is_AYryge0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783775784</pqid></control><display><type>article</type><title>Pathways to polar adaptation in fishes revealed by long‐read sequencing</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Hotaling, Scott ; Desvignes, Thomas ; Sproul, John S. ; Lins, Luana S. F. ; Kelley, Joanna L.</creator><creatorcontrib>Hotaling, Scott ; Desvignes, Thomas ; Sproul, John S. ; Lins, Luana S. F. ; Kelley, Joanna L.</creatorcontrib><description>Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.16501</identifier><identifier>PMID: 35561000</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acclimatization ; Adaptation ; Adaptation, Physiological - genetics ; Animals ; Antifreeze proteins ; Assemblies ; Assembly ; Clusters ; cold adaptation ; Environmental changes ; Evolution ; extremophile ; Fishes - genetics ; Gene sequencing ; genome biology ; Genomes ; Genomics ; Hemoglobin ; Hemoglobins ; Membrane structure ; Membrane structures ; Ophthalmolycus amberensis ; Perciformes - genetics ; Polar environments ; polar fish ; Positive selection ; Southern Ocean ; Temperature tolerance ; Thermal stress ; Zoarcoidei</subject><ispartof>Molecular ecology, 2023-03, Vol.32 (6), p.1381-1397</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</citedby><cites>FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</cites><orcidid>0000-0002-7731-605X ; 0000-0002-6747-3537 ; 0000-0001-5126-8785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.16501$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.16501$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35561000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hotaling, Scott</creatorcontrib><creatorcontrib>Desvignes, Thomas</creatorcontrib><creatorcontrib>Sproul, John S.</creatorcontrib><creatorcontrib>Lins, Luana S. F.</creatorcontrib><creatorcontrib>Kelley, Joanna L.</creatorcontrib><title>Pathways to polar adaptation in fishes revealed by long‐read sequencing</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution.</description><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Animals</subject><subject>Antifreeze proteins</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Clusters</subject><subject>cold adaptation</subject><subject>Environmental changes</subject><subject>Evolution</subject><subject>extremophile</subject><subject>Fishes - genetics</subject><subject>Gene sequencing</subject><subject>genome biology</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hemoglobin</subject><subject>Hemoglobins</subject><subject>Membrane structure</subject><subject>Membrane structures</subject><subject>Ophthalmolycus amberensis</subject><subject>Perciformes - genetics</subject><subject>Polar environments</subject><subject>polar fish</subject><subject>Positive selection</subject><subject>Southern Ocean</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>Zoarcoidei</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUQC0EoqUw8APIEgsMaf2IHxlRVaBSEQwd2CwncdtUeWEnVNn4BL6RL8GQwoDEXe5ydO7VAeAcozH2MylMMsacIXwAhphyFpAofD4EQxRxEmAk6QCcOLdFCFPC2DEYUMY4RggNwfxJN5ud7hxsKlhXubZQp7pudJNVJcxKuMrcxjhozavRuUlh3MG8Ktcfb-_W6BQ689KaMsnK9Sk4WuncmbP9HoHl7Ww5vQ8Wj3fz6c0iSKiUOAhlHLI44kiKUBgZpkjyGBkSSaI15yFDAosw0owzhrRkQhOBEU7ilNOIRHQErnptbSt_2jWqyFxi8lyXpmqdIt4hIiYo9ujlH3Rbtbb0zykiJBWCCRl66rqnEls5Z81K1TYrtO0URuorr_J51Xdez17sjW1cmPSX_OnpgUkP7LLcdP-b1MNs2is_AYryge0</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Hotaling, Scott</creator><creator>Desvignes, Thomas</creator><creator>Sproul, John S.</creator><creator>Lins, Luana S. F.</creator><creator>Kelley, Joanna L.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7731-605X</orcidid><orcidid>https://orcid.org/0000-0002-6747-3537</orcidid><orcidid>https://orcid.org/0000-0001-5126-8785</orcidid></search><sort><creationdate>202303</creationdate><title>Pathways to polar adaptation in fishes revealed by long‐read sequencing</title><author>Hotaling, Scott ; Desvignes, Thomas ; Sproul, John S. ; Lins, Luana S. F. ; Kelley, Joanna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-48b45b9608747e84d086b0e2982aa6645071749a56550a857a27101cbd639293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Animals</topic><topic>Antifreeze proteins</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Clusters</topic><topic>cold adaptation</topic><topic>Environmental changes</topic><topic>Evolution</topic><topic>extremophile</topic><topic>Fishes - genetics</topic><topic>Gene sequencing</topic><topic>genome biology</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hemoglobin</topic><topic>Hemoglobins</topic><topic>Membrane structure</topic><topic>Membrane structures</topic><topic>Ophthalmolycus amberensis</topic><topic>Perciformes - genetics</topic><topic>Polar environments</topic><topic>polar fish</topic><topic>Positive selection</topic><topic>Southern Ocean</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>Zoarcoidei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hotaling, Scott</creatorcontrib><creatorcontrib>Desvignes, Thomas</creatorcontrib><creatorcontrib>Sproul, John S.</creatorcontrib><creatorcontrib>Lins, Luana S. F.</creatorcontrib><creatorcontrib>Kelley, Joanna L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hotaling, Scott</au><au>Desvignes, Thomas</au><au>Sproul, John S.</au><au>Lins, Luana S. F.</au><au>Kelley, Joanna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathways to polar adaptation in fishes revealed by long‐read sequencing</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2023-03</date><risdate>2023</risdate><volume>32</volume><issue>6</issue><spage>1381</spage><epage>1397</epage><pages>1381-1397</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>35561000</pmid><doi>10.1111/mec.16501</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7731-605X</orcidid><orcidid>https://orcid.org/0000-0002-6747-3537</orcidid><orcidid>https://orcid.org/0000-0001-5126-8785</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2023-03, Vol.32 (6), p.1381-1397 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_2664795731 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Acclimatization Adaptation Adaptation, Physiological - genetics Animals Antifreeze proteins Assemblies Assembly Clusters cold adaptation Environmental changes Evolution extremophile Fishes - genetics Gene sequencing genome biology Genomes Genomics Hemoglobin Hemoglobins Membrane structure Membrane structures Ophthalmolycus amberensis Perciformes - genetics Polar environments polar fish Positive selection Southern Ocean Temperature tolerance Thermal stress Zoarcoidei |
title | Pathways to polar adaptation in fishes revealed by long‐read sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathways%20to%20polar%20adaptation%20in%20fishes%20revealed%20by%20long%E2%80%90read%20sequencing&rft.jtitle=Molecular%20ecology&rft.au=Hotaling,%20Scott&rft.date=2023-03&rft.volume=32&rft.issue=6&rft.spage=1381&rft.epage=1397&rft.pages=1381-1397&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.16501&rft_dat=%3Cproquest_cross%3E2783775784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783775784&rft_id=info:pmid/35561000&rfr_iscdi=true |