High-κ perovskite membranes as insulators for two-dimensional transistors
The scaling of silicon metal–oxide–semiconductor field-effect transistors has followed Moore’s law for decades, but the physical thinning of silicon at sub-ten-nanometre technology nodes introduces issues such as leakage currents 1 . Two-dimensional (2D) layered semiconductors, with an atomic thickn...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-05, Vol.605 (7909), p.262-267 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 7909 |
container_start_page | 262 |
container_title | Nature (London) |
container_volume | 605 |
creator | Huang, Jing-Kai Wan, Yi Shi, Junjie Zhang, Ji Wang, Zeheng Wang, Wenxuan Yang, Ni Liu, Yang Lin, Chun-Ho Guan, Xinwei Hu, Long Yang, Zi-Liang Huang, Bo-Chao Chiu, Ya-Ping Yang, Jack Tung, Vincent Wang, Danyang Kalantar-Zadeh, Kourosh Wu, Tom Zu, Xiaotao Qiao, Liang Li, Lain-Jong Li, Sean |
description | The scaling of silicon metal–oxide–semiconductor field-effect transistors has followed Moore’s law for decades, but the physical thinning of silicon at sub-ten-nanometre technology nodes introduces issues such as leakage currents
1
. Two-dimensional (2D) layered semiconductors, with an atomic thickness that allows superior gate-field penetration, are of interest as channel materials for future transistors
2
,
3
. However, the integration of high-dielectric-constant (
κ
) materials with 2D materials, while scaling their capacitance equivalent thickness (CET), has proved challenging. Here we explore transferrable ultrahigh-
κ
single-crystalline perovskite strontium-titanium-oxide membranes as a gate dielectric for 2D field-effect transistors. Our perovskite membranes exhibit a desirable sub-one-nanometre CET with a low leakage current (less than 10
−2
amperes per square centimetre at 2.5 megavolts per centimetre). We find that the van der Waals gap between strontium-titanium-oxide dielectrics and 2D semiconductors mitigates the unfavourable fringing-induced barrier-lowering effect resulting from the use of ultrahigh-
κ
dielectrics
4
. Typical short-channel transistors made of scalable molybdenum-disulfide films by chemical vapour deposition and strontium-titanium-oxide dielectrics exhibit steep subthreshold swings down to about 70 millivolts per decade and on/off current ratios up to 10
7
, which matches the low-power specifications suggested by the latest International Roadmap for Devices and Systems
5
.
Single-crystalline perovskite membranes with an ultrahigh dielectric constant show potential as a gate dielectric for two-dimensional field-effect transistors. |
doi_str_mv | 10.1038/s41586-022-04588-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2664789839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664914526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-4e01ced265d7cc56cbaab278122a1b4f732fb11b2bdd9bf74d3b75f816f15bde3</originalsourceid><addsrcrecordid>eNp9kDtOxTAQRS0EgsdnAxQoEg2NwXb8S4kQXyHRQG3ZifMIJPHDk4DYGotgTRjyAImCaoo5987oILRLySEluT4CToWWmDCGCRdaY7aCZpQribnUahXNCGEaE53LDbQJ8EAIEVTxdbSRC8El1XqGri6a-T1-f8sWPoZneGwGn3W-c9H2HjILWdPD2NohRMjqELPhJeCq6XwPTehtmw0JhAY-99torbYt-J3l3EJ3Z6e3Jxf4-ub88uT4GpecFgPmntDSV0yKSpWlkKWz1jGlKWOWOl6rnNWOUsdcVRWuVrzKnRK1prKmwlU-30IHU-8ihqfRw2C6BkrftunlMIJhUnKlC50XCd3_gz6EMaa_J6qgXDCZKDZRZQwA0ddmEZvOxldDifk0bSbTJpk2X6YNS6G9ZfXoOl_9RL7VJiCfAEirfu7j7-1_aj8AzzCK9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664914526</pqid></control><display><type>article</type><title>High-κ perovskite membranes as insulators for two-dimensional transistors</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Huang, Jing-Kai ; Wan, Yi ; Shi, Junjie ; Zhang, Ji ; Wang, Zeheng ; Wang, Wenxuan ; Yang, Ni ; Liu, Yang ; Lin, Chun-Ho ; Guan, Xinwei ; Hu, Long ; Yang, Zi-Liang ; Huang, Bo-Chao ; Chiu, Ya-Ping ; Yang, Jack ; Tung, Vincent ; Wang, Danyang ; Kalantar-Zadeh, Kourosh ; Wu, Tom ; Zu, Xiaotao ; Qiao, Liang ; Li, Lain-Jong ; Li, Sean</creator><creatorcontrib>Huang, Jing-Kai ; Wan, Yi ; Shi, Junjie ; Zhang, Ji ; Wang, Zeheng ; Wang, Wenxuan ; Yang, Ni ; Liu, Yang ; Lin, Chun-Ho ; Guan, Xinwei ; Hu, Long ; Yang, Zi-Liang ; Huang, Bo-Chao ; Chiu, Ya-Ping ; Yang, Jack ; Tung, Vincent ; Wang, Danyang ; Kalantar-Zadeh, Kourosh ; Wu, Tom ; Zu, Xiaotao ; Qiao, Liang ; Li, Lain-Jong ; Li, Sean</creatorcontrib><description>The scaling of silicon metal–oxide–semiconductor field-effect transistors has followed Moore’s law for decades, but the physical thinning of silicon at sub-ten-nanometre technology nodes introduces issues such as leakage currents
1
. Two-dimensional (2D) layered semiconductors, with an atomic thickness that allows superior gate-field penetration, are of interest as channel materials for future transistors
2
,
3
. However, the integration of high-dielectric-constant (
κ
) materials with 2D materials, while scaling their capacitance equivalent thickness (CET), has proved challenging. Here we explore transferrable ultrahigh-
κ
single-crystalline perovskite strontium-titanium-oxide membranes as a gate dielectric for 2D field-effect transistors. Our perovskite membranes exhibit a desirable sub-one-nanometre CET with a low leakage current (less than 10
−2
amperes per square centimetre at 2.5 megavolts per centimetre). We find that the van der Waals gap between strontium-titanium-oxide dielectrics and 2D semiconductors mitigates the unfavourable fringing-induced barrier-lowering effect resulting from the use of ultrahigh-
κ
dielectrics
4
. Typical short-channel transistors made of scalable molybdenum-disulfide films by chemical vapour deposition and strontium-titanium-oxide dielectrics exhibit steep subthreshold swings down to about 70 millivolts per decade and on/off current ratios up to 10
7
, which matches the low-power specifications suggested by the latest International Roadmap for Devices and Systems
5
.
Single-crystalline perovskite membranes with an ultrahigh dielectric constant show potential as a gate dielectric for two-dimensional field-effect transistors.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04588-2</identifier><identifier>PMID: 35546188</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/1005/1007 ; 639/301/357/995 ; 639/925/357/1018 ; Calcium Compounds ; Capacitance ; Chemical vapor deposition ; Field effect transistors ; Humanities and Social Sciences ; Insulators ; Interfaces ; Leakage current ; Membranes ; Metal oxide semiconductors ; Molybdenum ; Moore's law ; MOSFETs ; multidisciplinary ; Oxides - chemistry ; Perovskites ; Science ; Science (multidisciplinary) ; Semiconductor devices ; Semiconductors ; Silicon ; Silicon - chemistry ; Silicon Dioxide ; Single crystals ; Spectrum analysis ; Strontium ; Strontium oxides ; Thickness ; Titanium ; Transistors ; Transistors, Electronic ; Transmission electron microscopy ; Two dimensional materials</subject><ispartof>Nature (London), 2022-05, Vol.605 (7909), p.262-267</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 12, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-4e01ced265d7cc56cbaab278122a1b4f732fb11b2bdd9bf74d3b75f816f15bde3</citedby><cites>FETCH-LOGICAL-c419t-4e01ced265d7cc56cbaab278122a1b4f732fb11b2bdd9bf74d3b75f816f15bde3</cites><orcidid>0000-0002-0100-480X ; 0000-0001-7065-4411 ; 0000-0002-9976-5948 ; 0000-0003-2400-2986 ; 0000-0002-6994-1234 ; 0000-0003-0882-4728 ; 0000-0003-4437-8817 ; 0000-0003-0845-4827 ; 0000-0001-6109-132X ; 0000-0002-4059-7783 ; 0000-0002-7187-2653 ; 0000-0002-2193-9434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35546188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jing-Kai</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Shi, Junjie</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Wang, Zeheng</creatorcontrib><creatorcontrib>Wang, Wenxuan</creatorcontrib><creatorcontrib>Yang, Ni</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lin, Chun-Ho</creatorcontrib><creatorcontrib>Guan, Xinwei</creatorcontrib><creatorcontrib>Hu, Long</creatorcontrib><creatorcontrib>Yang, Zi-Liang</creatorcontrib><creatorcontrib>Huang, Bo-Chao</creatorcontrib><creatorcontrib>Chiu, Ya-Ping</creatorcontrib><creatorcontrib>Yang, Jack</creatorcontrib><creatorcontrib>Tung, Vincent</creatorcontrib><creatorcontrib>Wang, Danyang</creatorcontrib><creatorcontrib>Kalantar-Zadeh, Kourosh</creatorcontrib><creatorcontrib>Wu, Tom</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Li, Sean</creatorcontrib><title>High-κ perovskite membranes as insulators for two-dimensional transistors</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The scaling of silicon metal–oxide–semiconductor field-effect transistors has followed Moore’s law for decades, but the physical thinning of silicon at sub-ten-nanometre technology nodes introduces issues such as leakage currents
1
. Two-dimensional (2D) layered semiconductors, with an atomic thickness that allows superior gate-field penetration, are of interest as channel materials for future transistors
2
,
3
. However, the integration of high-dielectric-constant (
κ
) materials with 2D materials, while scaling their capacitance equivalent thickness (CET), has proved challenging. Here we explore transferrable ultrahigh-
κ
single-crystalline perovskite strontium-titanium-oxide membranes as a gate dielectric for 2D field-effect transistors. Our perovskite membranes exhibit a desirable sub-one-nanometre CET with a low leakage current (less than 10
−2
amperes per square centimetre at 2.5 megavolts per centimetre). We find that the van der Waals gap between strontium-titanium-oxide dielectrics and 2D semiconductors mitigates the unfavourable fringing-induced barrier-lowering effect resulting from the use of ultrahigh-
κ
dielectrics
4
. Typical short-channel transistors made of scalable molybdenum-disulfide films by chemical vapour deposition and strontium-titanium-oxide dielectrics exhibit steep subthreshold swings down to about 70 millivolts per decade and on/off current ratios up to 10
7
, which matches the low-power specifications suggested by the latest International Roadmap for Devices and Systems
5
.
Single-crystalline perovskite membranes with an ultrahigh dielectric constant show potential as a gate dielectric for two-dimensional field-effect transistors.</description><subject>142/126</subject><subject>639/301/1005/1007</subject><subject>639/301/357/995</subject><subject>639/925/357/1018</subject><subject>Calcium Compounds</subject><subject>Capacitance</subject><subject>Chemical vapor deposition</subject><subject>Field effect transistors</subject><subject>Humanities and Social Sciences</subject><subject>Insulators</subject><subject>Interfaces</subject><subject>Leakage current</subject><subject>Membranes</subject><subject>Metal oxide semiconductors</subject><subject>Molybdenum</subject><subject>Moore's law</subject><subject>MOSFETs</subject><subject>multidisciplinary</subject><subject>Oxides - chemistry</subject><subject>Perovskites</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon Dioxide</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Strontium</subject><subject>Strontium oxides</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Transistors</subject><subject>Transistors, Electronic</subject><subject>Transmission electron microscopy</subject><subject>Two dimensional materials</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDtOxTAQRS0EgsdnAxQoEg2NwXb8S4kQXyHRQG3ZifMIJPHDk4DYGotgTRjyAImCaoo5987oILRLySEluT4CToWWmDCGCRdaY7aCZpQribnUahXNCGEaE53LDbQJ8EAIEVTxdbSRC8El1XqGri6a-T1-f8sWPoZneGwGn3W-c9H2HjILWdPD2NohRMjqELPhJeCq6XwPTehtmw0JhAY-99torbYt-J3l3EJ3Z6e3Jxf4-ub88uT4GpecFgPmntDSV0yKSpWlkKWz1jGlKWOWOl6rnNWOUsdcVRWuVrzKnRK1prKmwlU-30IHU-8ihqfRw2C6BkrftunlMIJhUnKlC50XCd3_gz6EMaa_J6qgXDCZKDZRZQwA0ddmEZvOxldDifk0bSbTJpk2X6YNS6G9ZfXoOl_9RL7VJiCfAEirfu7j7-1_aj8AzzCK9Q</recordid><startdate>20220512</startdate><enddate>20220512</enddate><creator>Huang, Jing-Kai</creator><creator>Wan, Yi</creator><creator>Shi, Junjie</creator><creator>Zhang, Ji</creator><creator>Wang, Zeheng</creator><creator>Wang, Wenxuan</creator><creator>Yang, Ni</creator><creator>Liu, Yang</creator><creator>Lin, Chun-Ho</creator><creator>Guan, Xinwei</creator><creator>Hu, Long</creator><creator>Yang, Zi-Liang</creator><creator>Huang, Bo-Chao</creator><creator>Chiu, Ya-Ping</creator><creator>Yang, Jack</creator><creator>Tung, Vincent</creator><creator>Wang, Danyang</creator><creator>Kalantar-Zadeh, Kourosh</creator><creator>Wu, Tom</creator><creator>Zu, Xiaotao</creator><creator>Qiao, Liang</creator><creator>Li, Lain-Jong</creator><creator>Li, Sean</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0100-480X</orcidid><orcidid>https://orcid.org/0000-0001-7065-4411</orcidid><orcidid>https://orcid.org/0000-0002-9976-5948</orcidid><orcidid>https://orcid.org/0000-0003-2400-2986</orcidid><orcidid>https://orcid.org/0000-0002-6994-1234</orcidid><orcidid>https://orcid.org/0000-0003-0882-4728</orcidid><orcidid>https://orcid.org/0000-0003-4437-8817</orcidid><orcidid>https://orcid.org/0000-0003-0845-4827</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><orcidid>https://orcid.org/0000-0002-4059-7783</orcidid><orcidid>https://orcid.org/0000-0002-7187-2653</orcidid><orcidid>https://orcid.org/0000-0002-2193-9434</orcidid></search><sort><creationdate>20220512</creationdate><title>High-κ perovskite membranes as insulators for two-dimensional transistors</title><author>Huang, Jing-Kai ; Wan, Yi ; Shi, Junjie ; Zhang, Ji ; Wang, Zeheng ; Wang, Wenxuan ; Yang, Ni ; Liu, Yang ; Lin, Chun-Ho ; Guan, Xinwei ; Hu, Long ; Yang, Zi-Liang ; Huang, Bo-Chao ; Chiu, Ya-Ping ; Yang, Jack ; Tung, Vincent ; Wang, Danyang ; Kalantar-Zadeh, Kourosh ; Wu, Tom ; Zu, Xiaotao ; Qiao, Liang ; Li, Lain-Jong ; Li, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-4e01ced265d7cc56cbaab278122a1b4f732fb11b2bdd9bf74d3b75f816f15bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>142/126</topic><topic>639/301/1005/1007</topic><topic>639/301/357/995</topic><topic>639/925/357/1018</topic><topic>Calcium Compounds</topic><topic>Capacitance</topic><topic>Chemical vapor deposition</topic><topic>Field effect transistors</topic><topic>Humanities and Social Sciences</topic><topic>Insulators</topic><topic>Interfaces</topic><topic>Leakage current</topic><topic>Membranes</topic><topic>Metal oxide semiconductors</topic><topic>Molybdenum</topic><topic>Moore's law</topic><topic>MOSFETs</topic><topic>multidisciplinary</topic><topic>Oxides - chemistry</topic><topic>Perovskites</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon Dioxide</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Strontium</topic><topic>Strontium oxides</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Transistors</topic><topic>Transistors, Electronic</topic><topic>Transmission electron microscopy</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jing-Kai</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Shi, Junjie</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Wang, Zeheng</creatorcontrib><creatorcontrib>Wang, Wenxuan</creatorcontrib><creatorcontrib>Yang, Ni</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lin, Chun-Ho</creatorcontrib><creatorcontrib>Guan, Xinwei</creatorcontrib><creatorcontrib>Hu, Long</creatorcontrib><creatorcontrib>Yang, Zi-Liang</creatorcontrib><creatorcontrib>Huang, Bo-Chao</creatorcontrib><creatorcontrib>Chiu, Ya-Ping</creatorcontrib><creatorcontrib>Yang, Jack</creatorcontrib><creatorcontrib>Tung, Vincent</creatorcontrib><creatorcontrib>Wang, Danyang</creatorcontrib><creatorcontrib>Kalantar-Zadeh, Kourosh</creatorcontrib><creatorcontrib>Wu, Tom</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Li, Sean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jing-Kai</au><au>Wan, Yi</au><au>Shi, Junjie</au><au>Zhang, Ji</au><au>Wang, Zeheng</au><au>Wang, Wenxuan</au><au>Yang, Ni</au><au>Liu, Yang</au><au>Lin, Chun-Ho</au><au>Guan, Xinwei</au><au>Hu, Long</au><au>Yang, Zi-Liang</au><au>Huang, Bo-Chao</au><au>Chiu, Ya-Ping</au><au>Yang, Jack</au><au>Tung, Vincent</au><au>Wang, Danyang</au><au>Kalantar-Zadeh, Kourosh</au><au>Wu, Tom</au><au>Zu, Xiaotao</au><au>Qiao, Liang</au><au>Li, Lain-Jong</au><au>Li, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-κ perovskite membranes as insulators for two-dimensional transistors</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-05-12</date><risdate>2022</risdate><volume>605</volume><issue>7909</issue><spage>262</spage><epage>267</epage><pages>262-267</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The scaling of silicon metal–oxide–semiconductor field-effect transistors has followed Moore’s law for decades, but the physical thinning of silicon at sub-ten-nanometre technology nodes introduces issues such as leakage currents
1
. Two-dimensional (2D) layered semiconductors, with an atomic thickness that allows superior gate-field penetration, are of interest as channel materials for future transistors
2
,
3
. However, the integration of high-dielectric-constant (
κ
) materials with 2D materials, while scaling their capacitance equivalent thickness (CET), has proved challenging. Here we explore transferrable ultrahigh-
κ
single-crystalline perovskite strontium-titanium-oxide membranes as a gate dielectric for 2D field-effect transistors. Our perovskite membranes exhibit a desirable sub-one-nanometre CET with a low leakage current (less than 10
−2
amperes per square centimetre at 2.5 megavolts per centimetre). We find that the van der Waals gap between strontium-titanium-oxide dielectrics and 2D semiconductors mitigates the unfavourable fringing-induced barrier-lowering effect resulting from the use of ultrahigh-
κ
dielectrics
4
. Typical short-channel transistors made of scalable molybdenum-disulfide films by chemical vapour deposition and strontium-titanium-oxide dielectrics exhibit steep subthreshold swings down to about 70 millivolts per decade and on/off current ratios up to 10
7
, which matches the low-power specifications suggested by the latest International Roadmap for Devices and Systems
5
.
Single-crystalline perovskite membranes with an ultrahigh dielectric constant show potential as a gate dielectric for two-dimensional field-effect transistors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35546188</pmid><doi>10.1038/s41586-022-04588-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0100-480X</orcidid><orcidid>https://orcid.org/0000-0001-7065-4411</orcidid><orcidid>https://orcid.org/0000-0002-9976-5948</orcidid><orcidid>https://orcid.org/0000-0003-2400-2986</orcidid><orcidid>https://orcid.org/0000-0002-6994-1234</orcidid><orcidid>https://orcid.org/0000-0003-0882-4728</orcidid><orcidid>https://orcid.org/0000-0003-4437-8817</orcidid><orcidid>https://orcid.org/0000-0003-0845-4827</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><orcidid>https://orcid.org/0000-0002-4059-7783</orcidid><orcidid>https://orcid.org/0000-0002-7187-2653</orcidid><orcidid>https://orcid.org/0000-0002-2193-9434</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-05, Vol.605 (7909), p.262-267 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2664789839 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | 142/126 639/301/1005/1007 639/301/357/995 639/925/357/1018 Calcium Compounds Capacitance Chemical vapor deposition Field effect transistors Humanities and Social Sciences Insulators Interfaces Leakage current Membranes Metal oxide semiconductors Molybdenum Moore's law MOSFETs multidisciplinary Oxides - chemistry Perovskites Science Science (multidisciplinary) Semiconductor devices Semiconductors Silicon Silicon - chemistry Silicon Dioxide Single crystals Spectrum analysis Strontium Strontium oxides Thickness Titanium Transistors Transistors, Electronic Transmission electron microscopy Two dimensional materials |
title | High-κ perovskite membranes as insulators for two-dimensional transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-%CE%BA%20perovskite%20membranes%20as%20insulators%20for%20two-dimensional%20transistors&rft.jtitle=Nature%20(London)&rft.au=Huang,%20Jing-Kai&rft.date=2022-05-12&rft.volume=605&rft.issue=7909&rft.spage=262&rft.epage=267&rft.pages=262-267&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04588-2&rft_dat=%3Cproquest_cross%3E2664914526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664914526&rft_id=info:pmid/35546188&rfr_iscdi=true |