Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface

An air–water interface enables molecular assemblies and conformations to be controlled according to their intrinsic interactions and anisotropic stimuli. The chirality and conformation of binaphthyl derivatives have been controlled by tuning molecular aggregated states in solution. In this study, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2022-05, Vol.38 (20), p.6481-6490
Hauptverfasser: Ishii, Masaki, Mori, Taizo, Nakanishi, Waka, Hill, Jonathan P., Sakai, Hideki, Ariga, Katsuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6490
container_issue 20
container_start_page 6481
container_title Langmuir
container_volume 38
creator Ishii, Masaki
Mori, Taizo
Nakanishi, Waka
Hill, Jonathan P.
Sakai, Hideki
Ariga, Katsuhiko
description An air–water interface enables molecular assemblies and conformations to be controlled according to their intrinsic interactions and anisotropic stimuli. The chirality and conformation of binaphthyl derivatives have been controlled by tuning molecular aggregated states in solution. In this study, we have tuned molecular aggregated states of monobinaphthyldurene (MBD) by applying different mechanical stimuli to control the conformation at the air–water interface. Density functional theory calculations indicate that MBD exists essentially in two conformations, namely, 1-MBD (most stable) and 2-MBD (less stable). MBD was mechanically dissolved in appropriate lipid matrices using the Langmuir–Blodgett (LB) method, while pure MBD was self-assembled at the dynamic air–water interface in the absence of or by applying vortex motions (vortex LB method). In MBD mixed monolayer, surface pressure–molecular area measurements and atomic force microscopy observations suggest that separate lipids and MBD phases transform to mixed phases induced by the dissolution of MBD into the lipid matrices during mechanical compression at the air–water interface. Circular dichroism measurements indicate that molecular conformation changes from 1-MBD to 2-MBD in passing from a separated phase to a mixed MBD/lipid phase. In addition, the molecular aggregated states and conformations of MBD depend on the spreading volume and vortex flow rate when applying the vortex LB method. Molecular conformations and aggregated states of MBD could be controlled continuously by applying a mechanical stimulus at the air–water interface.
doi_str_mv 10.1021/acs.langmuir.2c00796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2664789281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664789281</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-2d51908fdf4bfb9ffb37659983937e557f54e74b0bbb8d3523322dbeded979563</originalsourceid><addsrcrecordid>eNp9kE1OGzEAha2qqKS0N6gqL7uZ1L_j8TJEQJFALErV5ciesSdGM3ZqexZhxR24ISepowSWbPxk6XvP8gfAN4yWGBH8U3VpOSo_TLOLS9IhJGT9ASwwJ6jiDREfwQIJRivBanoKPqf0gBCSlMlP4JRyziTleAHSrek2yrtOjfB-9s4PMFi4GoZoBpVND3_nEgnaEOE6-BKTyi74_SXHMO7p9a4b3WNhz51X203e7EaoMswbA1cuvjw9_y0TEV77clrVmS_gxKoxma_HPAN_Li_u17-qm7ur6_XqplIMs1yRnmOJGttbpq2W1moqai5lQyUVhnNhOTOCaaS1bnrKCaWE9Nr0ppdC8pqegR-H3W0M_2aTcju51JmxWDNhTi2payYaSRpcUHZAuxhSisa22-gmFXctRu1ed1t0t6-626PuUvt-fGHWk-nfSq9-C4AOwL7-EOboy4ff3_wPbEORxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664789281</pqid></control><display><type>article</type><title>Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface</title><source>MEDLINE</source><source>American Chemical Society Web Editions</source><creator>Ishii, Masaki ; Mori, Taizo ; Nakanishi, Waka ; Hill, Jonathan P. ; Sakai, Hideki ; Ariga, Katsuhiko</creator><creatorcontrib>Ishii, Masaki ; Mori, Taizo ; Nakanishi, Waka ; Hill, Jonathan P. ; Sakai, Hideki ; Ariga, Katsuhiko</creatorcontrib><description>An air–water interface enables molecular assemblies and conformations to be controlled according to their intrinsic interactions and anisotropic stimuli. The chirality and conformation of binaphthyl derivatives have been controlled by tuning molecular aggregated states in solution. In this study, we have tuned molecular aggregated states of monobinaphthyldurene (MBD) by applying different mechanical stimuli to control the conformation at the air–water interface. Density functional theory calculations indicate that MBD exists essentially in two conformations, namely, 1-MBD (most stable) and 2-MBD (less stable). MBD was mechanically dissolved in appropriate lipid matrices using the Langmuir–Blodgett (LB) method, while pure MBD was self-assembled at the dynamic air–water interface in the absence of or by applying vortex motions (vortex LB method). In MBD mixed monolayer, surface pressure–molecular area measurements and atomic force microscopy observations suggest that separate lipids and MBD phases transform to mixed phases induced by the dissolution of MBD into the lipid matrices during mechanical compression at the air–water interface. Circular dichroism measurements indicate that molecular conformation changes from 1-MBD to 2-MBD in passing from a separated phase to a mixed MBD/lipid phase. In addition, the molecular aggregated states and conformations of MBD depend on the spreading volume and vortex flow rate when applying the vortex LB method. Molecular conformations and aggregated states of MBD could be controlled continuously by applying a mechanical stimulus at the air–water interface.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.2c00796</identifier><identifier>PMID: 35549351</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Circular Dichroism ; Lipids ; Microscopy, Atomic Force ; Molecular Conformation ; Surface Properties ; Water</subject><ispartof>Langmuir, 2022-05, Vol.38 (20), p.6481-6490</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-2d51908fdf4bfb9ffb37659983937e557f54e74b0bbb8d3523322dbeded979563</citedby><cites>FETCH-LOGICAL-a414t-2d51908fdf4bfb9ffb37659983937e557f54e74b0bbb8d3523322dbeded979563</cites><orcidid>0000-0002-4229-5842 ; 0000-0002-6974-5137 ; 0000-0002-2445-2955 ; 0000-0001-6801-1839 ; 0000-0002-3665-5709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.2c00796$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.2c00796$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35549351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Masaki</creatorcontrib><creatorcontrib>Mori, Taizo</creatorcontrib><creatorcontrib>Nakanishi, Waka</creatorcontrib><creatorcontrib>Hill, Jonathan P.</creatorcontrib><creatorcontrib>Sakai, Hideki</creatorcontrib><creatorcontrib>Ariga, Katsuhiko</creatorcontrib><title>Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>An air–water interface enables molecular assemblies and conformations to be controlled according to their intrinsic interactions and anisotropic stimuli. The chirality and conformation of binaphthyl derivatives have been controlled by tuning molecular aggregated states in solution. In this study, we have tuned molecular aggregated states of monobinaphthyldurene (MBD) by applying different mechanical stimuli to control the conformation at the air–water interface. Density functional theory calculations indicate that MBD exists essentially in two conformations, namely, 1-MBD (most stable) and 2-MBD (less stable). MBD was mechanically dissolved in appropriate lipid matrices using the Langmuir–Blodgett (LB) method, while pure MBD was self-assembled at the dynamic air–water interface in the absence of or by applying vortex motions (vortex LB method). In MBD mixed monolayer, surface pressure–molecular area measurements and atomic force microscopy observations suggest that separate lipids and MBD phases transform to mixed phases induced by the dissolution of MBD into the lipid matrices during mechanical compression at the air–water interface. Circular dichroism measurements indicate that molecular conformation changes from 1-MBD to 2-MBD in passing from a separated phase to a mixed MBD/lipid phase. In addition, the molecular aggregated states and conformations of MBD depend on the spreading volume and vortex flow rate when applying the vortex LB method. Molecular conformations and aggregated states of MBD could be controlled continuously by applying a mechanical stimulus at the air–water interface.</description><subject>Circular Dichroism</subject><subject>Lipids</subject><subject>Microscopy, Atomic Force</subject><subject>Molecular Conformation</subject><subject>Surface Properties</subject><subject>Water</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1OGzEAha2qqKS0N6gqL7uZ1L_j8TJEQJFALErV5ciesSdGM3ZqexZhxR24ISepowSWbPxk6XvP8gfAN4yWGBH8U3VpOSo_TLOLS9IhJGT9ASwwJ6jiDREfwQIJRivBanoKPqf0gBCSlMlP4JRyziTleAHSrek2yrtOjfB-9s4PMFi4GoZoBpVND3_nEgnaEOE6-BKTyi74_SXHMO7p9a4b3WNhz51X203e7EaoMswbA1cuvjw9_y0TEV77clrVmS_gxKoxma_HPAN_Li_u17-qm7ur6_XqplIMs1yRnmOJGttbpq2W1moqai5lQyUVhnNhOTOCaaS1bnrKCaWE9Nr0ppdC8pqegR-H3W0M_2aTcju51JmxWDNhTi2payYaSRpcUHZAuxhSisa22-gmFXctRu1ed1t0t6-626PuUvt-fGHWk-nfSq9-C4AOwL7-EOboy4ff3_wPbEORxg</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Ishii, Masaki</creator><creator>Mori, Taizo</creator><creator>Nakanishi, Waka</creator><creator>Hill, Jonathan P.</creator><creator>Sakai, Hideki</creator><creator>Ariga, Katsuhiko</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4229-5842</orcidid><orcidid>https://orcid.org/0000-0002-6974-5137</orcidid><orcidid>https://orcid.org/0000-0002-2445-2955</orcidid><orcidid>https://orcid.org/0000-0001-6801-1839</orcidid><orcidid>https://orcid.org/0000-0002-3665-5709</orcidid></search><sort><creationdate>20220524</creationdate><title>Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface</title><author>Ishii, Masaki ; Mori, Taizo ; Nakanishi, Waka ; Hill, Jonathan P. ; Sakai, Hideki ; Ariga, Katsuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-2d51908fdf4bfb9ffb37659983937e557f54e74b0bbb8d3523322dbeded979563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circular Dichroism</topic><topic>Lipids</topic><topic>Microscopy, Atomic Force</topic><topic>Molecular Conformation</topic><topic>Surface Properties</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Masaki</creatorcontrib><creatorcontrib>Mori, Taizo</creatorcontrib><creatorcontrib>Nakanishi, Waka</creatorcontrib><creatorcontrib>Hill, Jonathan P.</creatorcontrib><creatorcontrib>Sakai, Hideki</creatorcontrib><creatorcontrib>Ariga, Katsuhiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Masaki</au><au>Mori, Taizo</au><au>Nakanishi, Waka</au><au>Hill, Jonathan P.</au><au>Sakai, Hideki</au><au>Ariga, Katsuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2022-05-24</date><risdate>2022</risdate><volume>38</volume><issue>20</issue><spage>6481</spage><epage>6490</epage><pages>6481-6490</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>An air–water interface enables molecular assemblies and conformations to be controlled according to their intrinsic interactions and anisotropic stimuli. The chirality and conformation of binaphthyl derivatives have been controlled by tuning molecular aggregated states in solution. In this study, we have tuned molecular aggregated states of monobinaphthyldurene (MBD) by applying different mechanical stimuli to control the conformation at the air–water interface. Density functional theory calculations indicate that MBD exists essentially in two conformations, namely, 1-MBD (most stable) and 2-MBD (less stable). MBD was mechanically dissolved in appropriate lipid matrices using the Langmuir–Blodgett (LB) method, while pure MBD was self-assembled at the dynamic air–water interface in the absence of or by applying vortex motions (vortex LB method). In MBD mixed monolayer, surface pressure–molecular area measurements and atomic force microscopy observations suggest that separate lipids and MBD phases transform to mixed phases induced by the dissolution of MBD into the lipid matrices during mechanical compression at the air–water interface. Circular dichroism measurements indicate that molecular conformation changes from 1-MBD to 2-MBD in passing from a separated phase to a mixed MBD/lipid phase. In addition, the molecular aggregated states and conformations of MBD depend on the spreading volume and vortex flow rate when applying the vortex LB method. Molecular conformations and aggregated states of MBD could be controlled continuously by applying a mechanical stimulus at the air–water interface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35549351</pmid><doi>10.1021/acs.langmuir.2c00796</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4229-5842</orcidid><orcidid>https://orcid.org/0000-0002-6974-5137</orcidid><orcidid>https://orcid.org/0000-0002-2445-2955</orcidid><orcidid>https://orcid.org/0000-0001-6801-1839</orcidid><orcidid>https://orcid.org/0000-0002-3665-5709</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2022-05, Vol.38 (20), p.6481-6490
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2664789281
source MEDLINE; American Chemical Society Web Editions
subjects Circular Dichroism
Lipids
Microscopy, Atomic Force
Molecular Conformation
Surface Properties
Water
title Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Tuning%20of%20Aggregated%20States%20for%20Conformation%20Control%20of%20Cyclized%20Binaphthyl%20at%20the%20Air%E2%80%93Water%20Interface&rft.jtitle=Langmuir&rft.au=Ishii,%20Masaki&rft.date=2022-05-24&rft.volume=38&rft.issue=20&rft.spage=6481&rft.epage=6490&rft.pages=6481-6490&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.2c00796&rft_dat=%3Cproquest_cross%3E2664789281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664789281&rft_id=info:pmid/35549351&rfr_iscdi=true