Improvements on objective and constraint functions in domain optimization

In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 1998-09, Vol.163 (1), p.271-291
1. Verfasser: Holzleitner, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 1
container_start_page 271
container_title Computer methods in applied mechanics and engineering
container_volume 163
creator Holzleitner, L.
description In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results.
doi_str_mv 10.1016/S0045-7825(98)00019-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26643761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578259800019X</els_id><sourcerecordid>26643761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-ed2451360f3e6cbfcc6b139583c83c06be2728cbf1802fba485df09f4916fadd3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIGQhoovRXCaZzEqkeCkUXKjQXchkEkiZSWoyLejTm2mLWyEQ8uc75yQfAJcY3WGE-f07QiUrKkHYTS1uEUK4LpZHYIJFVRcEU3EMJn_IKThLaZUhJDCZgPm8X8ewNb3xQ4LBw9CsjB7c1kDlW6iDT0NUzg_QbnzO8xk6D9vQ5xCG9eB696PG_BycWNUlc3HYp-Dz-elj9los3l7ms8dFoSlmQ2FaUjJMObLUcN1YrXmDac0E1Xkh3hhSEZEvsEDENqoUrLWotmWNuVVtS6fget83v_trY9Ige5e06TrlTdgkSTgvacVxBtke1DGkFI2V6-h6Fb8lRnIUJ3fi5GhF1kLuxMllrrs6DFBJq85G5bVLf8WkLBFjY_uHPWbyZ7fORJm0M16b1sVsULbB_TPoF6_6g8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26643761</pqid></control><display><type>article</type><title>Improvements on objective and constraint functions in domain optimization</title><source>Elsevier ScienceDirect Journals</source><creator>Holzleitner, L.</creator><creatorcontrib>Holzleitner, L.</creatorcontrib><description>In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(98)00019-X</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 1998-09, Vol.163 (1), p.271-291</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-ed2451360f3e6cbfcc6b139583c83c06be2728cbf1802fba485df09f4916fadd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004578259800019X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2440551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Holzleitner, L.</creatorcontrib><title>Improvements on objective and constraint functions in domain optimization</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIGQhoovRXCaZzEqkeCkUXKjQXchkEkiZSWoyLejTm2mLWyEQ8uc75yQfAJcY3WGE-f07QiUrKkHYTS1uEUK4LpZHYIJFVRcEU3EMJn_IKThLaZUhJDCZgPm8X8ewNb3xQ4LBw9CsjB7c1kDlW6iDT0NUzg_QbnzO8xk6D9vQ5xCG9eB696PG_BycWNUlc3HYp-Dz-elj9los3l7ms8dFoSlmQ2FaUjJMObLUcN1YrXmDac0E1Xkh3hhSEZEvsEDENqoUrLWotmWNuVVtS6fget83v_trY9Ige5e06TrlTdgkSTgvacVxBtke1DGkFI2V6-h6Fb8lRnIUJ3fi5GhF1kLuxMllrrs6DFBJq85G5bVLf8WkLBFjY_uHPWbyZ7fORJm0M16b1sVsULbB_TPoF6_6g8E</recordid><startdate>19980921</startdate><enddate>19980921</enddate><creator>Holzleitner, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980921</creationdate><title>Improvements on objective and constraint functions in domain optimization</title><author>Holzleitner, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-ed2451360f3e6cbfcc6b139583c83c06be2728cbf1802fba485df09f4916fadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holzleitner, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holzleitner, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvements on objective and constraint functions in domain optimization</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1998-09-21</date><risdate>1998</risdate><volume>163</volume><issue>1</issue><spage>271</spage><epage>291</epage><pages>271-291</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(98)00019-X</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 1998-09, Vol.163 (1), p.271-291
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_26643761
source Elsevier ScienceDirect Journals
subjects Computational techniques
Exact sciences and technology
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title Improvements on objective and constraint functions in domain optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvements%20on%20objective%20and%20constraint%20functions%20in%20domain%20optimization&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Holzleitner,%20L.&rft.date=1998-09-21&rft.volume=163&rft.issue=1&rft.spage=271&rft.epage=291&rft.pages=271-291&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(98)00019-X&rft_dat=%3Cproquest_cross%3E26643761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26643761&rft_id=info:pmid/&rft_els_id=S004578259800019X&rfr_iscdi=true