Improvements on objective and constraint functions in domain optimization
In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculati...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 1998-09, Vol.163 (1), p.271-291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 1 |
container_start_page | 271 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 163 |
creator | Holzleitner, L. |
description | In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results. |
doi_str_mv | 10.1016/S0045-7825(98)00019-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26643761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578259800019X</els_id><sourcerecordid>26643761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-ed2451360f3e6cbfcc6b139583c83c06be2728cbf1802fba485df09f4916fadd3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIGQhoovRXCaZzEqkeCkUXKjQXchkEkiZSWoyLejTm2mLWyEQ8uc75yQfAJcY3WGE-f07QiUrKkHYTS1uEUK4LpZHYIJFVRcEU3EMJn_IKThLaZUhJDCZgPm8X8ewNb3xQ4LBw9CsjB7c1kDlW6iDT0NUzg_QbnzO8xk6D9vQ5xCG9eB696PG_BycWNUlc3HYp-Dz-elj9los3l7ms8dFoSlmQ2FaUjJMObLUcN1YrXmDac0E1Xkh3hhSEZEvsEDENqoUrLWotmWNuVVtS6fget83v_trY9Ige5e06TrlTdgkSTgvacVxBtke1DGkFI2V6-h6Fb8lRnIUJ3fi5GhF1kLuxMllrrs6DFBJq85G5bVLf8WkLBFjY_uHPWbyZ7fORJm0M16b1sVsULbB_TPoF6_6g8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26643761</pqid></control><display><type>article</type><title>Improvements on objective and constraint functions in domain optimization</title><source>Elsevier ScienceDirect Journals</source><creator>Holzleitner, L.</creator><creatorcontrib>Holzleitner, L.</creatorcontrib><description>In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(98)00019-X</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 1998-09, Vol.163 (1), p.271-291</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-ed2451360f3e6cbfcc6b139583c83c06be2728cbf1802fba485df09f4916fadd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004578259800019X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2440551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Holzleitner, L.</creatorcontrib><title>Improvements on objective and constraint functions in domain optimization</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIGQhoovRXCaZzEqkeCkUXKjQXchkEkiZSWoyLejTm2mLWyEQ8uc75yQfAJcY3WGE-f07QiUrKkHYTS1uEUK4LpZHYIJFVRcEU3EMJn_IKThLaZUhJDCZgPm8X8ewNb3xQ4LBw9CsjB7c1kDlW6iDT0NUzg_QbnzO8xk6D9vQ5xCG9eB696PG_BycWNUlc3HYp-Dz-elj9los3l7ms8dFoSlmQ2FaUjJMObLUcN1YrXmDac0E1Xkh3hhSEZEvsEDENqoUrLWotmWNuVVtS6fget83v_trY9Ige5e06TrlTdgkSTgvacVxBtke1DGkFI2V6-h6Fb8lRnIUJ3fi5GhF1kLuxMllrrs6DFBJq85G5bVLf8WkLBFjY_uHPWbyZ7fORJm0M16b1sVsULbB_TPoF6_6g8E</recordid><startdate>19980921</startdate><enddate>19980921</enddate><creator>Holzleitner, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980921</creationdate><title>Improvements on objective and constraint functions in domain optimization</title><author>Holzleitner, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-ed2451360f3e6cbfcc6b139583c83c06be2728cbf1802fba485df09f4916fadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holzleitner, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holzleitner, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvements on objective and constraint functions in domain optimization</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1998-09-21</date><risdate>1998</risdate><volume>163</volume><issue>1</issue><spage>271</spage><epage>291</epage><pages>271-291</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper a sequential quadratic programming algorithm is efficiently coupled with the finite element package MSC/NASTRAN in order to optimize the shape of two-dimensional parts with piecewise constant thickness, where linearized elasticity is used. Three different methods for gradient calculation with respect to the changing of the shape are also coupled to MSC/NASTRAN. The aim of this article is to give a study on difficulties in the convergence of the shape using usual objective and constraint functions and improvements on them to avoid these difficulties. Two examples are presented to illustrate the improvements made and to give numerical results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(98)00019-X</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 1998-09, Vol.163 (1), p.271-291 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_26643761 |
source | Elsevier ScienceDirect Journals |
subjects | Computational techniques Exact sciences and technology Finite-element and galerkin methods Fundamental areas of phenomenology (including applications) Mathematical methods in physics Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | Improvements on objective and constraint functions in domain optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvements%20on%20objective%20and%20constraint%20functions%20in%20domain%20optimization&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Holzleitner,%20L.&rft.date=1998-09-21&rft.volume=163&rft.issue=1&rft.spage=271&rft.epage=291&rft.pages=271-291&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(98)00019-X&rft_dat=%3Cproquest_cross%3E26643761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26643761&rft_id=info:pmid/&rft_els_id=S004578259800019X&rfr_iscdi=true |