The medians of discrete sets

In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on Z 2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1998-03, Vol.65 (6), p.293-299
Hauptverfasser: Del Lungo, A., Nivat, M., Pinzani, R., Sorri, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 6
container_start_page 293
container_title Information processing letters
container_volume 65
creator Del Lungo, A.
Nivat, M.
Pinzani, R.
Sorri, L.
description In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on Z 2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set.
doi_str_mv 10.1016/S0020-0190(98)00020-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26640509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019098000209</els_id><sourcerecordid>29435216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_QGERET2s5jubk0jxCwoerOeQzU4wZbtbk63gvzf9wIMXTzMDz7wzPAidEXxDMJG3bxhTXGKi8ZWurvFm0ntoRCpFS0mI3kejX-QQHaU0z5DkTI3Q6ewDigU0wXap6H3RhOQiDFAkGNIxOvC2TXCyq2P0_vgwmzyX09enl8n9tHRM86GUQtY1x0wRWzMrG8UplxKcFso3otGQWyaoEpxKK2itraqo09RZqLn3lI3R5TZ3GfvPFaTBLPIb0La2g36VDJWSY4F1Bs__gPN-Fbv8m6FMUVVhwTMktpCLfUoRvFnGsLDx2xBs1sLMRphZ2zC6MhthZh1-sQu3ydnWR9u5kH6XKWNakSpjd1sMspGvANEkF6Bz2WEEN5imD_8c-gGDbHvj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237278054</pqid></control><display><type>article</type><title>The medians of discrete sets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Del Lungo, A. ; Nivat, M. ; Pinzani, R. ; Sorri, L.</creator><creatorcontrib>Del Lungo, A. ; Nivat, M. ; Pinzani, R. ; Sorri, L.</creatorcontrib><description>In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on Z 2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(98)00020-9</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>4-connected sets ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Combinatorial problems ; Computational geometry ; Computer science ; Computer science; control theory; systems ; Discrete sets ; Exact sciences and technology ; Geometry ; Information processing ; Manhattan metric ; Median ; Medians ; Pattern recognition. Digital image processing. Computational geometry ; Polyominoes ; Projections ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 1998-03, Vol.65 (6), p.293-299</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 27, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</citedby><cites>FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019098000209$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2339718$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Lungo, A.</creatorcontrib><creatorcontrib>Nivat, M.</creatorcontrib><creatorcontrib>Pinzani, R.</creatorcontrib><creatorcontrib>Sorri, L.</creatorcontrib><title>The medians of discrete sets</title><title>Information processing letters</title><description>In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on Z 2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set.</description><subject>4-connected sets</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Combinatorial problems</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Discrete sets</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Information processing</subject><subject>Manhattan metric</subject><subject>Median</subject><subject>Medians</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polyominoes</subject><subject>Projections</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_QGERET2s5jubk0jxCwoerOeQzU4wZbtbk63gvzf9wIMXTzMDz7wzPAidEXxDMJG3bxhTXGKi8ZWurvFm0ntoRCpFS0mI3kejX-QQHaU0z5DkTI3Q6ewDigU0wXap6H3RhOQiDFAkGNIxOvC2TXCyq2P0_vgwmzyX09enl8n9tHRM86GUQtY1x0wRWzMrG8UplxKcFso3otGQWyaoEpxKK2itraqo09RZqLn3lI3R5TZ3GfvPFaTBLPIb0La2g36VDJWSY4F1Bs__gPN-Fbv8m6FMUVVhwTMktpCLfUoRvFnGsLDx2xBs1sLMRphZ2zC6MhthZh1-sQu3ydnWR9u5kH6XKWNakSpjd1sMspGvANEkF6Bz2WEEN5imD_8c-gGDbHvj</recordid><startdate>19980327</startdate><enddate>19980327</enddate><creator>Del Lungo, A.</creator><creator>Nivat, M.</creator><creator>Pinzani, R.</creator><creator>Sorri, L.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980327</creationdate><title>The medians of discrete sets</title><author>Del Lungo, A. ; Nivat, M. ; Pinzani, R. ; Sorri, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>4-connected sets</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Combinatorial problems</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Discrete sets</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Information processing</topic><topic>Manhattan metric</topic><topic>Median</topic><topic>Medians</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polyominoes</topic><topic>Projections</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Lungo, A.</creatorcontrib><creatorcontrib>Nivat, M.</creatorcontrib><creatorcontrib>Pinzani, R.</creatorcontrib><creatorcontrib>Sorri, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Lungo, A.</au><au>Nivat, M.</au><au>Pinzani, R.</au><au>Sorri, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The medians of discrete sets</atitle><jtitle>Information processing letters</jtitle><date>1998-03-27</date><risdate>1998</risdate><volume>65</volume><issue>6</issue><spage>293</spage><epage>299</epage><pages>293-299</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on Z 2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(98)00020-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1998-03, Vol.65 (6), p.293-299
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_26640509
source Elsevier ScienceDirect Journals Complete
subjects 4-connected sets
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Combinatorial problems
Computational geometry
Computer science
Computer science
control theory
systems
Discrete sets
Exact sciences and technology
Geometry
Information processing
Manhattan metric
Median
Medians
Pattern recognition. Digital image processing. Computational geometry
Polyominoes
Projections
Studies
Theoretical computing
title The medians of discrete sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20medians%20of%20discrete%20sets&rft.jtitle=Information%20processing%20letters&rft.au=Del%20Lungo,%20A.&rft.date=1998-03-27&rft.volume=65&rft.issue=6&rft.spage=293&rft.epage=299&rft.pages=293-299&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(98)00020-9&rft_dat=%3Cproquest_cross%3E29435216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237278054&rft_id=info:pmid/&rft_els_id=S0020019098000209&rfr_iscdi=true