The medians of discrete sets
In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on Z 2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discre...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1998-03, Vol.65 (6), p.293-299 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 6 |
container_start_page | 293 |
container_title | Information processing letters |
container_volume | 65 |
creator | Del Lungo, A. Nivat, M. Pinzani, R. Sorri, L. |
description | In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on
Z
2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set. |
doi_str_mv | 10.1016/S0020-0190(98)00020-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26640509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019098000209</els_id><sourcerecordid>29435216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_QGERET2s5jubk0jxCwoerOeQzU4wZbtbk63gvzf9wIMXTzMDz7wzPAidEXxDMJG3bxhTXGKi8ZWurvFm0ntoRCpFS0mI3kejX-QQHaU0z5DkTI3Q6ewDigU0wXap6H3RhOQiDFAkGNIxOvC2TXCyq2P0_vgwmzyX09enl8n9tHRM86GUQtY1x0wRWzMrG8UplxKcFso3otGQWyaoEpxKK2itraqo09RZqLn3lI3R5TZ3GfvPFaTBLPIb0La2g36VDJWSY4F1Bs__gPN-Fbv8m6FMUVVhwTMktpCLfUoRvFnGsLDx2xBs1sLMRphZ2zC6MhthZh1-sQu3ydnWR9u5kH6XKWNakSpjd1sMspGvANEkF6Bz2WEEN5imD_8c-gGDbHvj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237278054</pqid></control><display><type>article</type><title>The medians of discrete sets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Del Lungo, A. ; Nivat, M. ; Pinzani, R. ; Sorri, L.</creator><creatorcontrib>Del Lungo, A. ; Nivat, M. ; Pinzani, R. ; Sorri, L.</creatorcontrib><description>In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on
Z
2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(98)00020-9</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>4-connected sets ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Combinatorial problems ; Computational geometry ; Computer science ; Computer science; control theory; systems ; Discrete sets ; Exact sciences and technology ; Geometry ; Information processing ; Manhattan metric ; Median ; Medians ; Pattern recognition. Digital image processing. Computational geometry ; Polyominoes ; Projections ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 1998-03, Vol.65 (6), p.293-299</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 27, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</citedby><cites>FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019098000209$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2339718$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Lungo, A.</creatorcontrib><creatorcontrib>Nivat, M.</creatorcontrib><creatorcontrib>Pinzani, R.</creatorcontrib><creatorcontrib>Sorri, L.</creatorcontrib><title>The medians of discrete sets</title><title>Information processing letters</title><description>In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on
Z
2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set.</description><subject>4-connected sets</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Combinatorial problems</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Discrete sets</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Information processing</subject><subject>Manhattan metric</subject><subject>Median</subject><subject>Medians</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polyominoes</subject><subject>Projections</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_QGERET2s5jubk0jxCwoerOeQzU4wZbtbk63gvzf9wIMXTzMDz7wzPAidEXxDMJG3bxhTXGKi8ZWurvFm0ntoRCpFS0mI3kejX-QQHaU0z5DkTI3Q6ewDigU0wXap6H3RhOQiDFAkGNIxOvC2TXCyq2P0_vgwmzyX09enl8n9tHRM86GUQtY1x0wRWzMrG8UplxKcFso3otGQWyaoEpxKK2itraqo09RZqLn3lI3R5TZ3GfvPFaTBLPIb0La2g36VDJWSY4F1Bs__gPN-Fbv8m6FMUVVhwTMktpCLfUoRvFnGsLDx2xBs1sLMRphZ2zC6MhthZh1-sQu3ydnWR9u5kH6XKWNakSpjd1sMspGvANEkF6Bz2WEEN5imD_8c-gGDbHvj</recordid><startdate>19980327</startdate><enddate>19980327</enddate><creator>Del Lungo, A.</creator><creator>Nivat, M.</creator><creator>Pinzani, R.</creator><creator>Sorri, L.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980327</creationdate><title>The medians of discrete sets</title><author>Del Lungo, A. ; Nivat, M. ; Pinzani, R. ; Sorri, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-656bb40371ab3a6d742466ec957fd5d9eec935275426a52b9a782c92caeb4ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>4-connected sets</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Combinatorial problems</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Discrete sets</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Information processing</topic><topic>Manhattan metric</topic><topic>Median</topic><topic>Medians</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polyominoes</topic><topic>Projections</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Lungo, A.</creatorcontrib><creatorcontrib>Nivat, M.</creatorcontrib><creatorcontrib>Pinzani, R.</creatorcontrib><creatorcontrib>Sorri, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Lungo, A.</au><au>Nivat, M.</au><au>Pinzani, R.</au><au>Sorri, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The medians of discrete sets</atitle><jtitle>Information processing letters</jtitle><date>1998-03-27</date><risdate>1998</risdate><volume>65</volume><issue>6</issue><spage>293</spage><epage>299</epage><pages>293-299</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>In this paper, we give a simple method for determining the medians of a discrete set according to the Manhattan metric on
Z
2. We show how the medians can be determined by means of the discrete set's projections along the horizontal and vertical directions. Moreover, we prove that if the discrete set satisfies some connection and convexity constraints along the previous directions, the medians belong to the discrete set.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(98)00020-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 1998-03, Vol.65 (6), p.293-299 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_miscellaneous_26640509 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 4-connected sets Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Combinatorial problems Computational geometry Computer science Computer science control theory systems Discrete sets Exact sciences and technology Geometry Information processing Manhattan metric Median Medians Pattern recognition. Digital image processing. Computational geometry Polyominoes Projections Studies Theoretical computing |
title | The medians of discrete sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20medians%20of%20discrete%20sets&rft.jtitle=Information%20processing%20letters&rft.au=Del%20Lungo,%20A.&rft.date=1998-03-27&rft.volume=65&rft.issue=6&rft.spage=293&rft.epage=299&rft.pages=293-299&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(98)00020-9&rft_dat=%3Cproquest_cross%3E29435216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237278054&rft_id=info:pmid/&rft_els_id=S0020019098000209&rfr_iscdi=true |