Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition
Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (o...
Gespeichert in:
Veröffentlicht in: | Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1998-07, Vol.29 (7), p.1865-1871 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1871 |
---|---|
container_issue | 7 |
container_start_page | 1865 |
container_title | Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science |
container_volume | 29 |
creator | ZOU, W. H LAM, C. W. H CHUNG, C. Y LAI, J. K. L |
description | Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs. |
doi_str_mv | 10.1007/s11661-998-0011-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_26628001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664678830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</originalsourceid><addsrcrecordid>eNp1kUuLFTEQhRtxwHH0B7iLD9xF834sh4svGJnNuHFhqEmnvRm6k2uSZrj-etPcwYXgqoriq8OpOsPwgpJ3lBD9vlKqFMXWGkwIpVg_Gs6pFBxTK8jj3hPNsVSMPxme1npHOmS5Oh9-fI2-5NrK6ttaYEa1rWMMFeUJAdqt-HvCl326h0PAS1hyOSKY53xE97Ht0QLpJ6RQA4I0ot-x-JziuiAYx9hiTs-GswnmGp4_1Ivh28cPN7vP-Or605fd5RX23IiGmVIwBgmT8lLdamJuJWPASBB-CpQIMFabjmiruBy5JVIIzgzXhFgrQuAXw8uTbj8luupjC37fvaTgm1NcSEU78_bEHEr-tYba3BKrD_PcD8hrdd0EM_0vHXz9D3iX15K6_40RShvDSade_ZeiXFkr-SZFT9D25FrC5A4lLlCOjhK3BedOwbkenNuCc7rvvHkQhuphngokH-vfRcYF0UzwPwdtlc0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213699531</pqid></control><display><type>article</type><title>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</title><source>SpringerLink Journals - AutoHoldings</source><creator>ZOU, W. H ; LAM, C. W. H ; CHUNG, C. Y ; LAI, J. K. L</creator><creatorcontrib>ZOU, W. H ; LAM, C. W. H ; CHUNG, C. Y ; LAI, J. K. L</creatorcontrib><description>Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-998-0011-7</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>ALUMINIUM ALLOYS ; Aluminum base alloys ; Applied sciences ; Chemical precipitation ; Copper ; COPPER ALLOYS ; Copper base alloys ; Cross-disciplinary physics: materials science; rheology ; CRYSTAL STRUCTURE ; Electron diffraction ; Exact sciences and technology ; Manganese ; MANGANESE ADDITIONS ; Martensite ; Martensitic transformations ; MATERIALS SCIENCE ; Metals. Metallurgy ; MICROSTRUCTURE ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitates ; PRECIPITATION ; Shape memory alloys ; SHAPE MEMORY EFFECT ; Transmission electron microscopy ; Zinc ; ZINC ALLOYS ; ZIRCONIUM ADDITIONS ; Zirconium base alloys</subject><ispartof>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1998-07, Vol.29 (7), p.1865-1871</ispartof><rights>1998 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Jul 1998</rights><rights>ASM International & TMS-The Minerals, Metals and Materials Society 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</citedby><cites>FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2340724$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/634561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ZOU, W. H</creatorcontrib><creatorcontrib>LAM, C. W. H</creatorcontrib><creatorcontrib>CHUNG, C. Y</creatorcontrib><creatorcontrib>LAI, J. K. L</creatorcontrib><title>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</title><title>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</title><description>Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs.</description><subject>ALUMINIUM ALLOYS</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>Chemical precipitation</subject><subject>Copper</subject><subject>COPPER ALLOYS</subject><subject>Copper base alloys</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CRYSTAL STRUCTURE</subject><subject>Electron diffraction</subject><subject>Exact sciences and technology</subject><subject>Manganese</subject><subject>MANGANESE ADDITIONS</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitates</subject><subject>PRECIPITATION</subject><subject>Shape memory alloys</subject><subject>SHAPE MEMORY EFFECT</subject><subject>Transmission electron microscopy</subject><subject>Zinc</subject><subject>ZINC ALLOYS</subject><subject>ZIRCONIUM ADDITIONS</subject><subject>Zirconium base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUuLFTEQhRtxwHH0B7iLD9xF834sh4svGJnNuHFhqEmnvRm6k2uSZrj-etPcwYXgqoriq8OpOsPwgpJ3lBD9vlKqFMXWGkwIpVg_Gs6pFBxTK8jj3hPNsVSMPxme1npHOmS5Oh9-fI2-5NrK6ttaYEa1rWMMFeUJAdqt-HvCl326h0PAS1hyOSKY53xE97Ht0QLpJ6RQA4I0ot-x-JziuiAYx9hiTs-GswnmGp4_1Ivh28cPN7vP-Or605fd5RX23IiGmVIwBgmT8lLdamJuJWPASBB-CpQIMFabjmiruBy5JVIIzgzXhFgrQuAXw8uTbj8luupjC37fvaTgm1NcSEU78_bEHEr-tYba3BKrD_PcD8hrdd0EM_0vHXz9D3iX15K6_40RShvDSade_ZeiXFkr-SZFT9D25FrC5A4lLlCOjhK3BedOwbkenNuCc7rvvHkQhuphngokH-vfRcYF0UzwPwdtlc0</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>ZOU, W. H</creator><creator>LAM, C. W. H</creator><creator>CHUNG, C. Y</creator><creator>LAI, J. K. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>PRINS</scope><scope>H8D</scope><scope>H8G</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19980701</creationdate><title>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</title><author>ZOU, W. H ; LAM, C. W. H ; CHUNG, C. Y ; LAI, J. K. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ALUMINIUM ALLOYS</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>Chemical precipitation</topic><topic>Copper</topic><topic>COPPER ALLOYS</topic><topic>Copper base alloys</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CRYSTAL STRUCTURE</topic><topic>Electron diffraction</topic><topic>Exact sciences and technology</topic><topic>Manganese</topic><topic>MANGANESE ADDITIONS</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitates</topic><topic>PRECIPITATION</topic><topic>Shape memory alloys</topic><topic>SHAPE MEMORY EFFECT</topic><topic>Transmission electron microscopy</topic><topic>Zinc</topic><topic>ZINC ALLOYS</topic><topic>ZIRCONIUM ADDITIONS</topic><topic>Zirconium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZOU, W. H</creatorcontrib><creatorcontrib>LAM, C. W. H</creatorcontrib><creatorcontrib>CHUNG, C. Y</creatorcontrib><creatorcontrib>LAI, J. K. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ProQuest Central China</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZOU, W. H</au><au>LAM, C. W. H</au><au>CHUNG, C. Y</au><au>LAI, J. K. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</atitle><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>29</volume><issue>7</issue><spage>1865</spage><epage>1871</epage><pages>1865-1871</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-998-0011-7</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1998-07, Vol.29 (7), p.1865-1871 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_26628001 |
source | SpringerLink Journals - AutoHoldings |
subjects | ALUMINIUM ALLOYS Aluminum base alloys Applied sciences Chemical precipitation Copper COPPER ALLOYS Copper base alloys Cross-disciplinary physics: materials science rheology CRYSTAL STRUCTURE Electron diffraction Exact sciences and technology Manganese MANGANESE ADDITIONS Martensite Martensitic transformations MATERIALS SCIENCE Metals. Metallurgy MICROSTRUCTURE Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Precipitates PRECIPITATION Shape memory alloys SHAPE MEMORY EFFECT Transmission electron microscopy Zinc ZINC ALLOYS ZIRCONIUM ADDITIONS Zirconium base alloys |
title | Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20studies%20of%20a%20Cu-Zn-Al%20shape-memory%20alloy%20with%20manganese%20and%20zirconium%20addition&rft.jtitle=Metallurgical%20and%20Materials%20Transactions.%20A,%20Physical%20Metallurgy%20and%20Materials%20Science&rft.au=ZOU,%20W.%20H&rft.date=1998-07-01&rft.volume=29&rft.issue=7&rft.spage=1865&rft.epage=1871&rft.pages=1865-1871&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-998-0011-7&rft_dat=%3Cproquest_osti_%3E2664678830%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213699531&rft_id=info:pmid/&rfr_iscdi=true |