Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition

Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1998-07, Vol.29 (7), p.1865-1871
Hauptverfasser: ZOU, W. H, LAM, C. W. H, CHUNG, C. Y, LAI, J. K. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1871
container_issue 7
container_start_page 1865
container_title Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
container_volume 29
creator ZOU, W. H
LAM, C. W. H
CHUNG, C. Y
LAI, J. K. L
description Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs.
doi_str_mv 10.1007/s11661-998-0011-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_26628001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664678830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</originalsourceid><addsrcrecordid>eNp1kUuLFTEQhRtxwHH0B7iLD9xF834sh4svGJnNuHFhqEmnvRm6k2uSZrj-etPcwYXgqoriq8OpOsPwgpJ3lBD9vlKqFMXWGkwIpVg_Gs6pFBxTK8jj3hPNsVSMPxme1npHOmS5Oh9-fI2-5NrK6ttaYEa1rWMMFeUJAdqt-HvCl326h0PAS1hyOSKY53xE97Ht0QLpJ6RQA4I0ot-x-JziuiAYx9hiTs-GswnmGp4_1Ivh28cPN7vP-Or605fd5RX23IiGmVIwBgmT8lLdamJuJWPASBB-CpQIMFabjmiruBy5JVIIzgzXhFgrQuAXw8uTbj8luupjC37fvaTgm1NcSEU78_bEHEr-tYba3BKrD_PcD8hrdd0EM_0vHXz9D3iX15K6_40RShvDSade_ZeiXFkr-SZFT9D25FrC5A4lLlCOjhK3BedOwbkenNuCc7rvvHkQhuphngokH-vfRcYF0UzwPwdtlc0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213699531</pqid></control><display><type>article</type><title>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</title><source>SpringerLink Journals - AutoHoldings</source><creator>ZOU, W. H ; LAM, C. W. H ; CHUNG, C. Y ; LAI, J. K. L</creator><creatorcontrib>ZOU, W. H ; LAM, C. W. H ; CHUNG, C. Y ; LAI, J. K. L</creatorcontrib><description>Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-998-0011-7</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>ALUMINIUM ALLOYS ; Aluminum base alloys ; Applied sciences ; Chemical precipitation ; Copper ; COPPER ALLOYS ; Copper base alloys ; Cross-disciplinary physics: materials science; rheology ; CRYSTAL STRUCTURE ; Electron diffraction ; Exact sciences and technology ; Manganese ; MANGANESE ADDITIONS ; Martensite ; Martensitic transformations ; MATERIALS SCIENCE ; Metals. Metallurgy ; MICROSTRUCTURE ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitates ; PRECIPITATION ; Shape memory alloys ; SHAPE MEMORY EFFECT ; Transmission electron microscopy ; Zinc ; ZINC ALLOYS ; ZIRCONIUM ADDITIONS ; Zirconium base alloys</subject><ispartof>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1998-07, Vol.29 (7), p.1865-1871</ispartof><rights>1998 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Jul 1998</rights><rights>ASM International &amp; TMS-The Minerals, Metals and Materials Society 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</citedby><cites>FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2340724$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/634561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ZOU, W. H</creatorcontrib><creatorcontrib>LAM, C. W. H</creatorcontrib><creatorcontrib>CHUNG, C. Y</creatorcontrib><creatorcontrib>LAI, J. K. L</creatorcontrib><title>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</title><title>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</title><description>Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs.</description><subject>ALUMINIUM ALLOYS</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>Chemical precipitation</subject><subject>Copper</subject><subject>COPPER ALLOYS</subject><subject>Copper base alloys</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CRYSTAL STRUCTURE</subject><subject>Electron diffraction</subject><subject>Exact sciences and technology</subject><subject>Manganese</subject><subject>MANGANESE ADDITIONS</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitates</subject><subject>PRECIPITATION</subject><subject>Shape memory alloys</subject><subject>SHAPE MEMORY EFFECT</subject><subject>Transmission electron microscopy</subject><subject>Zinc</subject><subject>ZINC ALLOYS</subject><subject>ZIRCONIUM ADDITIONS</subject><subject>Zirconium base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUuLFTEQhRtxwHH0B7iLD9xF834sh4svGJnNuHFhqEmnvRm6k2uSZrj-etPcwYXgqoriq8OpOsPwgpJ3lBD9vlKqFMXWGkwIpVg_Gs6pFBxTK8jj3hPNsVSMPxme1npHOmS5Oh9-fI2-5NrK6ttaYEa1rWMMFeUJAdqt-HvCl326h0PAS1hyOSKY53xE97Ht0QLpJ6RQA4I0ot-x-JziuiAYx9hiTs-GswnmGp4_1Ivh28cPN7vP-Or605fd5RX23IiGmVIwBgmT8lLdamJuJWPASBB-CpQIMFabjmiruBy5JVIIzgzXhFgrQuAXw8uTbj8luupjC37fvaTgm1NcSEU78_bEHEr-tYba3BKrD_PcD8hrdd0EM_0vHXz9D3iX15K6_40RShvDSade_ZeiXFkr-SZFT9D25FrC5A4lLlCOjhK3BedOwbkenNuCc7rvvHkQhuphngokH-vfRcYF0UzwPwdtlc0</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>ZOU, W. H</creator><creator>LAM, C. W. H</creator><creator>CHUNG, C. Y</creator><creator>LAI, J. K. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>PRINS</scope><scope>H8D</scope><scope>H8G</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19980701</creationdate><title>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</title><author>ZOU, W. H ; LAM, C. W. H ; CHUNG, C. Y ; LAI, J. K. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-266ade5af6c56b708b522a20e4cfe104a89786ad79635d3905443283700994ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ALUMINIUM ALLOYS</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>Chemical precipitation</topic><topic>Copper</topic><topic>COPPER ALLOYS</topic><topic>Copper base alloys</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CRYSTAL STRUCTURE</topic><topic>Electron diffraction</topic><topic>Exact sciences and technology</topic><topic>Manganese</topic><topic>MANGANESE ADDITIONS</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitates</topic><topic>PRECIPITATION</topic><topic>Shape memory alloys</topic><topic>SHAPE MEMORY EFFECT</topic><topic>Transmission electron microscopy</topic><topic>Zinc</topic><topic>ZINC ALLOYS</topic><topic>ZIRCONIUM ADDITIONS</topic><topic>Zirconium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZOU, W. H</creatorcontrib><creatorcontrib>LAM, C. W. H</creatorcontrib><creatorcontrib>CHUNG, C. Y</creatorcontrib><creatorcontrib>LAI, J. K. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ProQuest Central China</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZOU, W. H</au><au>LAM, C. W. H</au><au>CHUNG, C. Y</au><au>LAI, J. K. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition</atitle><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>29</volume><issue>7</issue><spage>1865</spage><epage>1871</epage><pages>1865-1871</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Mn and Zr were added to improve the shape-memory characteristics of a Cu-Zn-Al shape-memory alloy (SMA). The microstructure of a Cu-19.0Zn-13.1Al-1.1Mn-0.3Zr (at. pct) alloy was examined using a transmission electron microscope (TEM). The structure of the parent phase and martensite phase are DO3 (or L21) and M18R1, respectively. Two kinds of Zr-rich precipitates formed in the alloy. Energy-dispersive X-ray spectroscopy (EDXS) analysis with a TEM indicates that the two precipitates are all new phases and have the compositions of Cu50.2Zr24.6Al17.3Zn7.9 (at. pct) (Z1 phase) and Cu57.4Zr20.4Zn10.3Al11.9 (at. pct) (Z2 phase), respectively. The volume ratio of Z1 phase in the alloy is about 70 pct of the total precipitate volume. The structure of Z1 phase was studied in detail using TEM electron diffraction analyses. The lattice parameter of fcc Z1 phase is a=1.24 nm, and the space group of the phase is F432 (No. 209). The Z1 phase possesses an incoherent interface with the parent-phase matrix. The lattice correspondence of the Z1 phase and parent-phase matrix is as follows: The effect of precipitate formation on the shape-memory characteristics of the Cu-Zn-Al-Mn-Zr alloy is discussed and compared to some other Cu-based SMAs.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-998-0011-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1998-07, Vol.29 (7), p.1865-1871
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_26628001
source SpringerLink Journals - AutoHoldings
subjects ALUMINIUM ALLOYS
Aluminum base alloys
Applied sciences
Chemical precipitation
Copper
COPPER ALLOYS
Copper base alloys
Cross-disciplinary physics: materials science
rheology
CRYSTAL STRUCTURE
Electron diffraction
Exact sciences and technology
Manganese
MANGANESE ADDITIONS
Martensite
Martensitic transformations
MATERIALS SCIENCE
Metals. Metallurgy
MICROSTRUCTURE
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitates
PRECIPITATION
Shape memory alloys
SHAPE MEMORY EFFECT
Transmission electron microscopy
Zinc
ZINC ALLOYS
ZIRCONIUM ADDITIONS
Zirconium base alloys
title Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20studies%20of%20a%20Cu-Zn-Al%20shape-memory%20alloy%20with%20manganese%20and%20zirconium%20addition&rft.jtitle=Metallurgical%20and%20Materials%20Transactions.%20A,%20Physical%20Metallurgy%20and%20Materials%20Science&rft.au=ZOU,%20W.%20H&rft.date=1998-07-01&rft.volume=29&rft.issue=7&rft.spage=1865&rft.epage=1871&rft.pages=1865-1871&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-998-0011-7&rft_dat=%3Cproquest_osti_%3E2664678830%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213699531&rft_id=info:pmid/&rfr_iscdi=true