Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study

Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-12, Vol.9 (69), p.4214-4221
Hauptverfasser: Phan, Anh D, Wakabayashi, Katsunori, Paluch, Marian, Lam, Vu D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4221
container_issue 69
container_start_page 4214
container_title RSC advances
container_volume 9
creator Phan, Anh D
Wakabayashi, Katsunori
Paluch, Marian
Lam, Vu D
description Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulations. Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs.
doi_str_mv 10.1039/c9ra08441j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2662549348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662549348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-ec22c711a7433b4bce287780f07a88dabab9cc227a3a1aceafbcdf05e54c04003</originalsourceid><addsrcrecordid>eNpdkkuLFDEURoMozjDOxr0ScCNCa571cCEMzfhiQBBdh1upW93VpJKeJNXYP8V_a9oe29HapMg9OXw3N4Q85ew1Z7J9Y9sIrFGKbx6Qc8FUtRCsah_e-z8jlyltWPkqzUXFH5MzqbUSlarPyc_rYUCbEw0DtSG40a9ohIw0eJpynG2eIzga0cEPyGPZHT2FKcTtOsyJ9nFepbe0VFMeLTi3LxbninHcIfXBFyFCpA78CnflKN7OR01eY4h7Cr6nE9h1wagrpD8ESHnu90_IowFcwsu79YJ8f3_9bflxcfPlw6fl1c3CaqnzAq0QtuYcaiVlpzqLoqnrhg2shqbpoYOutYWpQQIHizB0th-YRq0sU4zJC_Lu6N3O3YS9RZ9Lx2Ybxwni3gQYzb8VP67NKuxMy-qKt6oIXt4JYridMWUzjcmiKz1juSMjqkpo1UrVFPTFf-gmzNGX9oyQoqpbKfUh0asjZWNIKeJwCsOZOQzdLNuvV7-H_rnAz-_HP6F_RlyAZ0cgJnuq_n018hdtbbbV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2326793350</pqid></control><display><type>article</type><title>Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Phan, Anh D ; Wakabayashi, Katsunori ; Paluch, Marian ; Lam, Vu D</creator><creatorcontrib>Phan, Anh D ; Wakabayashi, Katsunori ; Paluch, Marian ; Lam, Vu D</creatorcontrib><description>Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulations. Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra08441j</identifier><identifier>PMID: 35542647</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amorphous structure ; Artificial intelligence ; Chemistry ; Cooling effects ; Cooling rate ; Coupling (molecular) ; Drugs ; Fragility ; Glass transition temperature ; Machine learning ; Melting points ; Relaxation time ; Temperature</subject><ispartof>RSC advances, 2019-12, Vol.9 (69), p.4214-4221</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-ec22c711a7433b4bce287780f07a88dabab9cc227a3a1aceafbcdf05e54c04003</citedby><cites>FETCH-LOGICAL-c535t-ec22c711a7433b4bce287780f07a88dabab9cc227a3a1aceafbcdf05e54c04003</cites><orcidid>0000-0002-9147-9939 ; 0000-0002-8667-1299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076194/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076194/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35542647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phan, Anh D</creatorcontrib><creatorcontrib>Wakabayashi, Katsunori</creatorcontrib><creatorcontrib>Paluch, Marian</creatorcontrib><creatorcontrib>Lam, Vu D</creatorcontrib><title>Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulations. Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs.</description><subject>Amorphous structure</subject><subject>Artificial intelligence</subject><subject>Chemistry</subject><subject>Cooling effects</subject><subject>Cooling rate</subject><subject>Coupling (molecular)</subject><subject>Drugs</subject><subject>Fragility</subject><subject>Glass transition temperature</subject><subject>Machine learning</subject><subject>Melting points</subject><subject>Relaxation time</subject><subject>Temperature</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkkuLFDEURoMozjDOxr0ScCNCa571cCEMzfhiQBBdh1upW93VpJKeJNXYP8V_a9oe29HapMg9OXw3N4Q85ew1Z7J9Y9sIrFGKbx6Qc8FUtRCsah_e-z8jlyltWPkqzUXFH5MzqbUSlarPyc_rYUCbEw0DtSG40a9ohIw0eJpynG2eIzga0cEPyGPZHT2FKcTtOsyJ9nFepbe0VFMeLTi3LxbninHcIfXBFyFCpA78CnflKN7OR01eY4h7Cr6nE9h1wagrpD8ESHnu90_IowFcwsu79YJ8f3_9bflxcfPlw6fl1c3CaqnzAq0QtuYcaiVlpzqLoqnrhg2shqbpoYOutYWpQQIHizB0th-YRq0sU4zJC_Lu6N3O3YS9RZ9Lx2Ybxwni3gQYzb8VP67NKuxMy-qKt6oIXt4JYridMWUzjcmiKz1juSMjqkpo1UrVFPTFf-gmzNGX9oyQoqpbKfUh0asjZWNIKeJwCsOZOQzdLNuvV7-H_rnAz-_HP6F_RlyAZ0cgJnuq_n018hdtbbbV</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Phan, Anh D</creator><creator>Wakabayashi, Katsunori</creator><creator>Paluch, Marian</creator><creator>Lam, Vu D</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9147-9939</orcidid><orcidid>https://orcid.org/0000-0002-8667-1299</orcidid></search><sort><creationdate>20191204</creationdate><title>Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study</title><author>Phan, Anh D ; Wakabayashi, Katsunori ; Paluch, Marian ; Lam, Vu D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-ec22c711a7433b4bce287780f07a88dabab9cc227a3a1aceafbcdf05e54c04003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphous structure</topic><topic>Artificial intelligence</topic><topic>Chemistry</topic><topic>Cooling effects</topic><topic>Cooling rate</topic><topic>Coupling (molecular)</topic><topic>Drugs</topic><topic>Fragility</topic><topic>Glass transition temperature</topic><topic>Machine learning</topic><topic>Melting points</topic><topic>Relaxation time</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Anh D</creatorcontrib><creatorcontrib>Wakabayashi, Katsunori</creatorcontrib><creatorcontrib>Paluch, Marian</creatorcontrib><creatorcontrib>Lam, Vu D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan, Anh D</au><au>Wakabayashi, Katsunori</au><au>Paluch, Marian</au><au>Lam, Vu D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-12-04</date><risdate>2019</risdate><volume>9</volume><issue>69</issue><spage>4214</spage><epage>4221</epage><pages>4214-4221</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulations. Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35542647</pmid><doi>10.1039/c9ra08441j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9147-9939</orcidid><orcidid>https://orcid.org/0000-0002-8667-1299</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2019-12, Vol.9 (69), p.4214-4221
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2662549348
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Amorphous structure
Artificial intelligence
Chemistry
Cooling effects
Cooling rate
Coupling (molecular)
Drugs
Fragility
Glass transition temperature
Machine learning
Melting points
Relaxation time
Temperature
title Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20cooling%20rate%20on%20structural%20relaxation%20in%20amorphous%20drugs:%20elastically%20collective%20nonlinear%20langevin%20equation%20theory%20and%20machine%20learning%20study&rft.jtitle=RSC%20advances&rft.au=Phan,%20Anh%20D&rft.date=2019-12-04&rft.volume=9&rft.issue=69&rft.spage=4214&rft.epage=4221&rft.pages=4214-4221&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra08441j&rft_dat=%3Cproquest_pubme%3E2662549348%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2326793350&rft_id=info:pmid/35542647&rfr_iscdi=true