Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods

Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2018-01, Vol.8 (48), p.27283-27292
Hauptverfasser: Thomas, Siby, Ajith, K. M, Lee, Sang Uck, Valsakumar, M. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27292
container_issue 48
container_start_page 27283
container_title RSC advances
container_volume 8
creator Thomas, Siby
Ajith, K. M
Lee, Sang Uck
Valsakumar, M. C
description Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities. Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods.
doi_str_mv 10.1039/c8ra02967a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2662540421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662540421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</originalsourceid><addsrcrecordid>eNpdks1rFTEUxYMottRu3CsDboowmo-ZZLIRHo9ahUKh6DpkMjdvUmaSMckI77837auv1WxuLueXw72cIPSW4E8EM_nZdFFjKrnQL9ApxQ2vKeby5bP7CTpP6Q6Xw1tCOXmNTljbMikFP0XzJiVIaQafq2CrPEI1gxm1d0ZP1RLDAjE7SPfiHHyY9B5itYt6GcFDtSbndw-vShd3-0r7oUo5audrO60mrzq74ItnHsOQ3qBXVk8Jzh_rGfr59fLH9lt9fXP1fbu5rk3DZa5F25KGAhjby57jgWoiCBks65juhBVUCwoDBQZ86C0RUjKOezmQ1lIjSM_O0JeD77L2MwymbBf1pJboZh33Kmin_lW8G9Uu_FYSd6xpZDG4eDSI4dcKKavZJQPTpD2ENSnKOW0b3FBS0A__oXdhjb6spyjuKMG0xaxQHw-UiSGlCPY4DMHqPki17W43D0FuCvz--fhH9G9sBXh3AGIyR_XpJ7A_p9WlBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082102503</pqid></control><display><type>article</type><title>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Thomas, Siby ; Ajith, K. M ; Lee, Sang Uck ; Valsakumar, M. C</creator><creatorcontrib>Thomas, Siby ; Ajith, K. M ; Lee, Sang Uck ; Valsakumar, M. C</creatorcontrib><description>Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities. Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c8ra02967a</identifier><identifier>PMID: 35539976</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anharmonicity ; Bending modulus ; Chemistry ; Computer simulation ; Elastic anisotropy ; Elastic properties ; Graphene ; Mechanical properties ; Modulus of elasticity ; Monolayers ; Poisson's ratio ; S waves ; Spatial analysis ; Strain ; Temperature dependence ; Variation</subject><ispartof>RSC advances, 2018-01, Vol.8 (48), p.27283-27292</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</citedby><cites>FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</cites><orcidid>0000-0001-9596-2349 ; 0000-0001-7841-1932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083449/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083449/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35539976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Siby</creatorcontrib><creatorcontrib>Ajith, K. M</creatorcontrib><creatorcontrib>Lee, Sang Uck</creatorcontrib><creatorcontrib>Valsakumar, M. C</creatorcontrib><title>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities. Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods.</description><subject>Anharmonicity</subject><subject>Bending modulus</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Graphene</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Monolayers</subject><subject>Poisson's ratio</subject><subject>S waves</subject><subject>Spatial analysis</subject><subject>Strain</subject><subject>Temperature dependence</subject><subject>Variation</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdks1rFTEUxYMottRu3CsDboowmo-ZZLIRHo9ahUKh6DpkMjdvUmaSMckI77837auv1WxuLueXw72cIPSW4E8EM_nZdFFjKrnQL9ApxQ2vKeby5bP7CTpP6Q6Xw1tCOXmNTljbMikFP0XzJiVIaQafq2CrPEI1gxm1d0ZP1RLDAjE7SPfiHHyY9B5itYt6GcFDtSbndw-vShd3-0r7oUo5audrO60mrzq74ItnHsOQ3qBXVk8Jzh_rGfr59fLH9lt9fXP1fbu5rk3DZa5F25KGAhjby57jgWoiCBks65juhBVUCwoDBQZ86C0RUjKOezmQ1lIjSM_O0JeD77L2MwymbBf1pJboZh33Kmin_lW8G9Uu_FYSd6xpZDG4eDSI4dcKKavZJQPTpD2ENSnKOW0b3FBS0A__oXdhjb6spyjuKMG0xaxQHw-UiSGlCPY4DMHqPki17W43D0FuCvz--fhH9G9sBXh3AGIyR_XpJ7A_p9WlBA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Thomas, Siby</creator><creator>Ajith, K. M</creator><creator>Lee, Sang Uck</creator><creator>Valsakumar, M. C</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9596-2349</orcidid><orcidid>https://orcid.org/0000-0001-7841-1932</orcidid></search><sort><creationdate>20180101</creationdate><title>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</title><author>Thomas, Siby ; Ajith, K. M ; Lee, Sang Uck ; Valsakumar, M. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>Bending modulus</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Graphene</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Monolayers</topic><topic>Poisson's ratio</topic><topic>S waves</topic><topic>Spatial analysis</topic><topic>Strain</topic><topic>Temperature dependence</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Siby</creatorcontrib><creatorcontrib>Ajith, K. M</creatorcontrib><creatorcontrib>Lee, Sang Uck</creatorcontrib><creatorcontrib>Valsakumar, M. C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Siby</au><au>Ajith, K. M</au><au>Lee, Sang Uck</au><au>Valsakumar, M. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>8</volume><issue>48</issue><spage>27283</spage><epage>27292</epage><pages>27283-27292</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities. Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35539976</pmid><doi>10.1039/c8ra02967a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9596-2349</orcidid><orcidid>https://orcid.org/0000-0001-7841-1932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2018-01, Vol.8 (48), p.27283-27292
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2662540421
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Anharmonicity
Bending modulus
Chemistry
Computer simulation
Elastic anisotropy
Elastic properties
Graphene
Mechanical properties
Modulus of elasticity
Monolayers
Poisson's ratio
S waves
Spatial analysis
Strain
Temperature dependence
Variation
title Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20mechanical%20properties%20of%20monolayer%20graphene%20using%20the%20energy%20and%20strain-fluctuation%20methods&rft.jtitle=RSC%20advances&rft.au=Thomas,%20Siby&rft.date=2018-01-01&rft.volume=8&rft.issue=48&rft.spage=27283&rft.epage=27292&rft.pages=27283-27292&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c8ra02967a&rft_dat=%3Cproquest_pubme%3E2662540421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082102503&rft_id=info:pmid/35539976&rfr_iscdi=true