Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods
Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotr...
Gespeichert in:
Veröffentlicht in: | RSC advances 2018-01, Vol.8 (48), p.27283-27292 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27292 |
---|---|
container_issue | 48 |
container_start_page | 27283 |
container_title | RSC advances |
container_volume | 8 |
creator | Thomas, Siby Ajith, K. M Lee, Sang Uck Valsakumar, M. C |
description | Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities.
Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods. |
doi_str_mv | 10.1039/c8ra02967a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2662540421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662540421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</originalsourceid><addsrcrecordid>eNpdks1rFTEUxYMottRu3CsDboowmo-ZZLIRHo9ahUKh6DpkMjdvUmaSMckI77837auv1WxuLueXw72cIPSW4E8EM_nZdFFjKrnQL9ApxQ2vKeby5bP7CTpP6Q6Xw1tCOXmNTljbMikFP0XzJiVIaQafq2CrPEI1gxm1d0ZP1RLDAjE7SPfiHHyY9B5itYt6GcFDtSbndw-vShd3-0r7oUo5audrO60mrzq74ItnHsOQ3qBXVk8Jzh_rGfr59fLH9lt9fXP1fbu5rk3DZa5F25KGAhjby57jgWoiCBks65juhBVUCwoDBQZ86C0RUjKOezmQ1lIjSM_O0JeD77L2MwymbBf1pJboZh33Kmin_lW8G9Uu_FYSd6xpZDG4eDSI4dcKKavZJQPTpD2ENSnKOW0b3FBS0A__oXdhjb6spyjuKMG0xaxQHw-UiSGlCPY4DMHqPki17W43D0FuCvz--fhH9G9sBXh3AGIyR_XpJ7A_p9WlBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082102503</pqid></control><display><type>article</type><title>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Thomas, Siby ; Ajith, K. M ; Lee, Sang Uck ; Valsakumar, M. C</creator><creatorcontrib>Thomas, Siby ; Ajith, K. M ; Lee, Sang Uck ; Valsakumar, M. C</creatorcontrib><description>Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities.
Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c8ra02967a</identifier><identifier>PMID: 35539976</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anharmonicity ; Bending modulus ; Chemistry ; Computer simulation ; Elastic anisotropy ; Elastic properties ; Graphene ; Mechanical properties ; Modulus of elasticity ; Monolayers ; Poisson's ratio ; S waves ; Spatial analysis ; Strain ; Temperature dependence ; Variation</subject><ispartof>RSC advances, 2018-01, Vol.8 (48), p.27283-27292</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</citedby><cites>FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</cites><orcidid>0000-0001-9596-2349 ; 0000-0001-7841-1932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083449/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083449/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35539976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Siby</creatorcontrib><creatorcontrib>Ajith, K. M</creatorcontrib><creatorcontrib>Lee, Sang Uck</creatorcontrib><creatorcontrib>Valsakumar, M. C</creatorcontrib><title>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities.
Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods.</description><subject>Anharmonicity</subject><subject>Bending modulus</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Graphene</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Monolayers</subject><subject>Poisson's ratio</subject><subject>S waves</subject><subject>Spatial analysis</subject><subject>Strain</subject><subject>Temperature dependence</subject><subject>Variation</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdks1rFTEUxYMottRu3CsDboowmo-ZZLIRHo9ahUKh6DpkMjdvUmaSMckI77837auv1WxuLueXw72cIPSW4E8EM_nZdFFjKrnQL9ApxQ2vKeby5bP7CTpP6Q6Xw1tCOXmNTljbMikFP0XzJiVIaQafq2CrPEI1gxm1d0ZP1RLDAjE7SPfiHHyY9B5itYt6GcFDtSbndw-vShd3-0r7oUo5audrO60mrzq74ItnHsOQ3qBXVk8Jzh_rGfr59fLH9lt9fXP1fbu5rk3DZa5F25KGAhjby57jgWoiCBks65juhBVUCwoDBQZ86C0RUjKOezmQ1lIjSM_O0JeD77L2MwymbBf1pJboZh33Kmin_lW8G9Uu_FYSd6xpZDG4eDSI4dcKKavZJQPTpD2ENSnKOW0b3FBS0A__oXdhjb6spyjuKMG0xaxQHw-UiSGlCPY4DMHqPki17W43D0FuCvz--fhH9G9sBXh3AGIyR_XpJ7A_p9WlBA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Thomas, Siby</creator><creator>Ajith, K. M</creator><creator>Lee, Sang Uck</creator><creator>Valsakumar, M. C</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9596-2349</orcidid><orcidid>https://orcid.org/0000-0001-7841-1932</orcidid></search><sort><creationdate>20180101</creationdate><title>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</title><author>Thomas, Siby ; Ajith, K. M ; Lee, Sang Uck ; Valsakumar, M. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-755142eecfb9b60d2a1711df383a87f72a72ed2e3e6dbf1799360b9d15f2c71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>Bending modulus</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Graphene</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Monolayers</topic><topic>Poisson's ratio</topic><topic>S waves</topic><topic>Spatial analysis</topic><topic>Strain</topic><topic>Temperature dependence</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Siby</creatorcontrib><creatorcontrib>Ajith, K. M</creatorcontrib><creatorcontrib>Lee, Sang Uck</creatorcontrib><creatorcontrib>Valsakumar, M. C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Siby</au><au>Ajith, K. M</au><au>Lee, Sang Uck</au><au>Valsakumar, M. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>8</volume><issue>48</issue><spage>27283</spage><epage>27292</epage><pages>27283-27292</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Molecular statics and dynamics simulations were performed to investigate the mechanical properties of a monolayer graphene sheet using an efficient energy method and strain-fluctuation method. Using the energy method, we observed that the mechanical properties of an infinite graphene sheet are isotropic, whereas for a finite sheet, they are anisotropic. This work is the first to report the temperature-dependent elastic constants of graphene between 100 and 1000 K using the strain-fluctuation method. We found that the out-of-plane thermal excursions in a graphene membrane lead to strong anharmonic behavior, which allows large deviations from isotropic elasticity. The computed Young's modulus and Poisson's ratio of a sheet with an infinite spatial extent are 0.939 TPa and 0.223, respectively. We also found that graphene sheets with both finite and infinite spatial extent satisfy the Born elastic stability conditions. We extracted the variation in bending modulus with the system size at zero kelvin (0.83 eV) using a formula derived from the Foppl-von Karman approach. When the temperature increases, the Young's modulus of the sample decreases, which effectively reduces the longitudinal and shear wave velocities.
Molecular statics and dynamics simulation for the elastic constants of graphene monolayer by the energy and the statistical fluctuation methods.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35539976</pmid><doi>10.1039/c8ra02967a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9596-2349</orcidid><orcidid>https://orcid.org/0000-0001-7841-1932</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2018-01, Vol.8 (48), p.27283-27292 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2662540421 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Anharmonicity Bending modulus Chemistry Computer simulation Elastic anisotropy Elastic properties Graphene Mechanical properties Modulus of elasticity Monolayers Poisson's ratio S waves Spatial analysis Strain Temperature dependence Variation |
title | Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20mechanical%20properties%20of%20monolayer%20graphene%20using%20the%20energy%20and%20strain-fluctuation%20methods&rft.jtitle=RSC%20advances&rft.au=Thomas,%20Siby&rft.date=2018-01-01&rft.volume=8&rft.issue=48&rft.spage=27283&rft.epage=27292&rft.pages=27283-27292&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c8ra02967a&rft_dat=%3Cproquest_pubme%3E2662540421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082102503&rft_id=info:pmid/35539976&rfr_iscdi=true |