Wavelet packet analysis for face recognition
A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images...
Gespeichert in:
Veröffentlicht in: | Image and vision computing 2000-03, Vol.18 (4), p.289-297 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 297 |
---|---|
container_issue | 4 |
container_start_page | 289 |
container_title | Image and vision computing |
container_volume | 18 |
creator | Garcia, C. Zikos, G. Tziritas, G. |
description | A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method. |
doi_str_mv | 10.1016/S0262-8856(99)00056-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26623394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885699000566</els_id><sourcerecordid>26623394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</originalsourceid><addsrcrecordid>eNqFkE1LAzEYhIMoWKs_QdiTKLiabDZfJ5HiFxQ8qHgMafJGottNTbaF_nvTVrx6GhieGZhB6JTgK4IJv37BDW9qKRk_V-oCY8x4zffQiEhRbELlPhr9IYfoKOfPAgks1AhdvpsVdDBUC2O_ipjedOsccuVjqryxUCWw8aMPQ4j9MTrwpstw8qtj9HZ_9zp5rKfPD0-T22ltKZVDLSyh1HiYKddwDg47YBR7rzh3kknpBHO4pcxb45ltZ6RtBSbUMka8EjNPx-hs17tI8XsJedDzkC10nekhLrMurQ2lqi0g24E2xZwTeL1IYW7SWhOsN9_o7Td6M1wrpbffaF5yN7sclBWrAElnG6C34EKZO2gXwz8NP91GawQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26623394</pqid></control><display><type>article</type><title>Wavelet packet analysis for face recognition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Garcia, C. ; Zikos, G. ; Tziritas, G.</creator><creatorcontrib>Garcia, C. ; Zikos, G. ; Tziritas, G.</creatorcontrib><description>A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/S0262-8856(99)00056-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Face recognition ; Facial features extraction ; Wavelet packet decomposition</subject><ispartof>Image and vision computing, 2000-03, Vol.18 (4), p.289-297</ispartof><rights>1999 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</citedby><cites>FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0262-8856(99)00056-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Garcia, C.</creatorcontrib><creatorcontrib>Zikos, G.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><title>Wavelet packet analysis for face recognition</title><title>Image and vision computing</title><description>A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method.</description><subject>Face recognition</subject><subject>Facial features extraction</subject><subject>Wavelet packet decomposition</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEYhIMoWKs_QdiTKLiabDZfJ5HiFxQ8qHgMafJGottNTbaF_nvTVrx6GhieGZhB6JTgK4IJv37BDW9qKRk_V-oCY8x4zffQiEhRbELlPhr9IYfoKOfPAgks1AhdvpsVdDBUC2O_ipjedOsccuVjqryxUCWw8aMPQ4j9MTrwpstw8qtj9HZ_9zp5rKfPD0-T22ltKZVDLSyh1HiYKddwDg47YBR7rzh3kknpBHO4pcxb45ltZ6RtBSbUMka8EjNPx-hs17tI8XsJedDzkC10nekhLrMurQ2lqi0g24E2xZwTeL1IYW7SWhOsN9_o7Td6M1wrpbffaF5yN7sclBWrAElnG6C34EKZO2gXwz8NP91GawQ</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Garcia, C.</creator><creator>Zikos, G.</creator><creator>Tziritas, G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000301</creationdate><title>Wavelet packet analysis for face recognition</title><author>Garcia, C. ; Zikos, G. ; Tziritas, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Face recognition</topic><topic>Facial features extraction</topic><topic>Wavelet packet decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, C.</creatorcontrib><creatorcontrib>Zikos, G.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, C.</au><au>Zikos, G.</au><au>Tziritas, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet packet analysis for face recognition</atitle><jtitle>Image and vision computing</jtitle><date>2000-03-01</date><risdate>2000</risdate><volume>18</volume><issue>4</issue><spage>289</spage><epage>297</epage><pages>289-297</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0262-8856(99)00056-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2000-03, Vol.18 (4), p.289-297 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_26623394 |
source | Access via ScienceDirect (Elsevier) |
subjects | Face recognition Facial features extraction Wavelet packet decomposition |
title | Wavelet packet analysis for face recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20packet%20analysis%20for%20face%20recognition&rft.jtitle=Image%20and%20vision%20computing&rft.au=Garcia,%20C.&rft.date=2000-03-01&rft.volume=18&rft.issue=4&rft.spage=289&rft.epage=297&rft.pages=289-297&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/S0262-8856(99)00056-6&rft_dat=%3Cproquest_cross%3E26623394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26623394&rft_id=info:pmid/&rft_els_id=S0262885699000566&rfr_iscdi=true |