Wavelet packet analysis for face recognition

A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2000-03, Vol.18 (4), p.289-297
Hauptverfasser: Garcia, C., Zikos, G., Tziritas, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 4
container_start_page 289
container_title Image and vision computing
container_volume 18
creator Garcia, C.
Zikos, G.
Tziritas, G.
description A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method.
doi_str_mv 10.1016/S0262-8856(99)00056-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26623394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885699000566</els_id><sourcerecordid>26623394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</originalsourceid><addsrcrecordid>eNqFkE1LAzEYhIMoWKs_QdiTKLiabDZfJ5HiFxQ8qHgMafJGottNTbaF_nvTVrx6GhieGZhB6JTgK4IJv37BDW9qKRk_V-oCY8x4zffQiEhRbELlPhr9IYfoKOfPAgks1AhdvpsVdDBUC2O_ipjedOsccuVjqryxUCWw8aMPQ4j9MTrwpstw8qtj9HZ_9zp5rKfPD0-T22ltKZVDLSyh1HiYKddwDg47YBR7rzh3kknpBHO4pcxb45ltZ6RtBSbUMka8EjNPx-hs17tI8XsJedDzkC10nekhLrMurQ2lqi0g24E2xZwTeL1IYW7SWhOsN9_o7Td6M1wrpbffaF5yN7sclBWrAElnG6C34EKZO2gXwz8NP91GawQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26623394</pqid></control><display><type>article</type><title>Wavelet packet analysis for face recognition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Garcia, C. ; Zikos, G. ; Tziritas, G.</creator><creatorcontrib>Garcia, C. ; Zikos, G. ; Tziritas, G.</creatorcontrib><description>A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/S0262-8856(99)00056-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Face recognition ; Facial features extraction ; Wavelet packet decomposition</subject><ispartof>Image and vision computing, 2000-03, Vol.18 (4), p.289-297</ispartof><rights>1999 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</citedby><cites>FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0262-8856(99)00056-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Garcia, C.</creatorcontrib><creatorcontrib>Zikos, G.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><title>Wavelet packet analysis for face recognition</title><title>Image and vision computing</title><description>A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method.</description><subject>Face recognition</subject><subject>Facial features extraction</subject><subject>Wavelet packet decomposition</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEYhIMoWKs_QdiTKLiabDZfJ5HiFxQ8qHgMafJGottNTbaF_nvTVrx6GhieGZhB6JTgK4IJv37BDW9qKRk_V-oCY8x4zffQiEhRbELlPhr9IYfoKOfPAgks1AhdvpsVdDBUC2O_ipjedOsccuVjqryxUCWw8aMPQ4j9MTrwpstw8qtj9HZ_9zp5rKfPD0-T22ltKZVDLSyh1HiYKddwDg47YBR7rzh3kknpBHO4pcxb45ltZ6RtBSbUMka8EjNPx-hs17tI8XsJedDzkC10nekhLrMurQ2lqi0g24E2xZwTeL1IYW7SWhOsN9_o7Td6M1wrpbffaF5yN7sclBWrAElnG6C34EKZO2gXwz8NP91GawQ</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Garcia, C.</creator><creator>Zikos, G.</creator><creator>Tziritas, G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000301</creationdate><title>Wavelet packet analysis for face recognition</title><author>Garcia, C. ; Zikos, G. ; Tziritas, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7c133afeb9d266ed0de530ff966d8588d75d0435fcaf5c4b1447013c551f97bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Face recognition</topic><topic>Facial features extraction</topic><topic>Wavelet packet decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, C.</creatorcontrib><creatorcontrib>Zikos, G.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, C.</au><au>Zikos, G.</au><au>Tziritas, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet packet analysis for face recognition</atitle><jtitle>Image and vision computing</jtitle><date>2000-03-01</date><risdate>2000</risdate><volume>18</volume><issue>4</issue><spage>289</spage><epage>297</epage><pages>289-297</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>A novel method for recognition of frontal views of human faces under roughly constant illumination is presented. The proposed scheme is based on the analysis of a wavelet packet decomposition of the face images. Each face image is first located and then, described by a subset of band filtered images containing wavelet coefficients. From these wavelet coefficients, which characterize the face texture, we build compact and meaningful feature vectors, using simple statistical measures. Then, we show how an efficient and reliable probabilistic metric derived from the Bhattacharrya distance can be used in order to classify the face feature vectors into person classes. Experimental results are presented using images from the FERET and the FACES databases. The efficiency of the proposed approach is analyzed according to the FERET evaluation procedure and by comparing our results with those obtained using the well-known Eigenfaces method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0262-8856(99)00056-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 2000-03, Vol.18 (4), p.289-297
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_26623394
source Access via ScienceDirect (Elsevier)
subjects Face recognition
Facial features extraction
Wavelet packet decomposition
title Wavelet packet analysis for face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20packet%20analysis%20for%20face%20recognition&rft.jtitle=Image%20and%20vision%20computing&rft.au=Garcia,%20C.&rft.date=2000-03-01&rft.volume=18&rft.issue=4&rft.spage=289&rft.epage=297&rft.pages=289-297&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/S0262-8856(99)00056-6&rft_dat=%3Cproquest_cross%3E26623394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26623394&rft_id=info:pmid/&rft_els_id=S0262885699000566&rfr_iscdi=true