Exponential closure method for some randomly excited non-linear systems
The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gauss...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2000, Vol.35 (1), p.69-78 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | International journal of non-linear mechanics |
container_volume | 35 |
creator | Er, Guo-Kang |
description | The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method. |
doi_str_mv | 10.1016/S0020-7462(98)00088-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26621939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746298000882</els_id><sourcerecordid>26621939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-155941b4b753752b576bdab1e552e43227cc153b06cad1e952f3197a6f16c9a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiFiC5G85g8ZiVSahUKLuw-ZDJ3MJJJajIV---dWtGlq7v5zj2cD6Fzgm8IJuL2BWOKS1kJelWra4yxUiU9QBOipCq5YOoQTX6RY3SS8xsecxWWE7SYf65jgDA44wvrY94kKHoYXmNbdDEVOfZQJBPa2PttAZ_WDdAWIYbSuwBmBLZ5gD6foqPO-AxnP3eKVg_z1eyxXD4vnmb3y9IyIYeScF5XpKkayZnktOFSNK1pCHBOoWKUSmsJZw0W1rQEak47RmppREeErQ2bosv923WK7xvIg-5dtuC9CRA3WVMhKKlZPYJ8D9oUc07Q6XVyvUlbTbDeWdPf1vROia6V_ram6Zi7-Ckw2RrfjdOty39hSrjCZMTu9hiMWz8cJJ2tg2ChdQnsoNvo_in6Aj9ngNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26621939</pqid></control><display><type>article</type><title>Exponential closure method for some randomly excited non-linear systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Er, Guo-Kang</creator><creatorcontrib>Er, Guo-Kang</creatorcontrib><description>The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/S0020-7462(98)00088-2</identifier><identifier>CODEN: IJNMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Physics ; Probability theory, stochastic processes, and statistics ; Stochastic processes</subject><ispartof>International journal of non-linear mechanics, 2000, Vol.35 (1), p.69-78</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-155941b4b753752b576bdab1e552e43227cc153b06cad1e952f3197a6f16c9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7462(98)00088-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1215801$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Er, Guo-Kang</creatorcontrib><title>Exponential closure method for some randomly excited non-linear systems</title><title>International journal of non-linear mechanics</title><description>The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Probability theory, stochastic processes, and statistics</subject><subject>Stochastic processes</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiFiC5G85g8ZiVSahUKLuw-ZDJ3MJJJajIV---dWtGlq7v5zj2cD6Fzgm8IJuL2BWOKS1kJelWra4yxUiU9QBOipCq5YOoQTX6RY3SS8xsecxWWE7SYf65jgDA44wvrY94kKHoYXmNbdDEVOfZQJBPa2PttAZ_WDdAWIYbSuwBmBLZ5gD6foqPO-AxnP3eKVg_z1eyxXD4vnmb3y9IyIYeScF5XpKkayZnktOFSNK1pCHBOoWKUSmsJZw0W1rQEak47RmppREeErQ2bosv923WK7xvIg-5dtuC9CRA3WVMhKKlZPYJ8D9oUc07Q6XVyvUlbTbDeWdPf1vROia6V_ram6Zi7-Ckw2RrfjdOty39hSrjCZMTu9hiMWz8cJJ2tg2ChdQnsoNvo_in6Aj9ngNk</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Er, Guo-Kang</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>2000</creationdate><title>Exponential closure method for some randomly excited non-linear systems</title><author>Er, Guo-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-155941b4b753752b576bdab1e552e43227cc153b06cad1e952f3197a6f16c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Probability theory, stochastic processes, and statistics</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Er, Guo-Kang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Er, Guo-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential closure method for some randomly excited non-linear systems</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2000</date><risdate>2000</risdate><volume>35</volume><issue>1</issue><spage>69</spage><epage>78</epage><pages>69-78</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><coden>IJNMAG</coden><abstract>The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7462(98)00088-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2000, Vol.35 (1), p.69-78 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_miscellaneous_26621939 |
source | Access via ScienceDirect (Elsevier) |
subjects | Exact sciences and technology Mathematical methods in physics Physics Probability theory, stochastic processes, and statistics Stochastic processes |
title | Exponential closure method for some randomly excited non-linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20closure%20method%20for%20some%20randomly%20excited%20non-linear%20systems&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Er,%20Guo-Kang&rft.date=2000&rft.volume=35&rft.issue=1&rft.spage=69&rft.epage=78&rft.pages=69-78&rft.issn=0020-7462&rft.eissn=1878-5638&rft.coden=IJNMAG&rft_id=info:doi/10.1016/S0020-7462(98)00088-2&rft_dat=%3Cproquest_cross%3E26621939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26621939&rft_id=info:pmid/&rft_els_id=S0020746298000882&rfr_iscdi=true |