Exponential closure method for some randomly excited non-linear systems

The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gauss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2000, Vol.35 (1), p.69-78
1. Verfasser: Er, Guo-Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 69
container_title International journal of non-linear mechanics
container_volume 35
creator Er, Guo-Kang
description The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.
doi_str_mv 10.1016/S0020-7462(98)00088-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26621939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746298000882</els_id><sourcerecordid>26621939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-155941b4b753752b576bdab1e552e43227cc153b06cad1e952f3197a6f16c9a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiFiC5G85g8ZiVSahUKLuw-ZDJ3MJJJajIV---dWtGlq7v5zj2cD6Fzgm8IJuL2BWOKS1kJelWra4yxUiU9QBOipCq5YOoQTX6RY3SS8xsecxWWE7SYf65jgDA44wvrY94kKHoYXmNbdDEVOfZQJBPa2PttAZ_WDdAWIYbSuwBmBLZ5gD6foqPO-AxnP3eKVg_z1eyxXD4vnmb3y9IyIYeScF5XpKkayZnktOFSNK1pCHBOoWKUSmsJZw0W1rQEak47RmppREeErQ2bosv923WK7xvIg-5dtuC9CRA3WVMhKKlZPYJ8D9oUc07Q6XVyvUlbTbDeWdPf1vROia6V_ram6Zi7-Ckw2RrfjdOty39hSrjCZMTu9hiMWz8cJJ2tg2ChdQnsoNvo_in6Aj9ngNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26621939</pqid></control><display><type>article</type><title>Exponential closure method for some randomly excited non-linear systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Er, Guo-Kang</creator><creatorcontrib>Er, Guo-Kang</creatorcontrib><description>The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/S0020-7462(98)00088-2</identifier><identifier>CODEN: IJNMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Physics ; Probability theory, stochastic processes, and statistics ; Stochastic processes</subject><ispartof>International journal of non-linear mechanics, 2000, Vol.35 (1), p.69-78</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-155941b4b753752b576bdab1e552e43227cc153b06cad1e952f3197a6f16c9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7462(98)00088-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1215801$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Er, Guo-Kang</creatorcontrib><title>Exponential closure method for some randomly excited non-linear systems</title><title>International journal of non-linear mechanics</title><description>The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Probability theory, stochastic processes, and statistics</subject><subject>Stochastic processes</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiFiC5G85g8ZiVSahUKLuw-ZDJ3MJJJajIV---dWtGlq7v5zj2cD6Fzgm8IJuL2BWOKS1kJelWra4yxUiU9QBOipCq5YOoQTX6RY3SS8xsecxWWE7SYf65jgDA44wvrY94kKHoYXmNbdDEVOfZQJBPa2PttAZ_WDdAWIYbSuwBmBLZ5gD6foqPO-AxnP3eKVg_z1eyxXD4vnmb3y9IyIYeScF5XpKkayZnktOFSNK1pCHBOoWKUSmsJZw0W1rQEak47RmppREeErQ2bosv923WK7xvIg-5dtuC9CRA3WVMhKKlZPYJ8D9oUc07Q6XVyvUlbTbDeWdPf1vROia6V_ram6Zi7-Ckw2RrfjdOty39hSrjCZMTu9hiMWz8cJJ2tg2ChdQnsoNvo_in6Aj9ngNk</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Er, Guo-Kang</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>2000</creationdate><title>Exponential closure method for some randomly excited non-linear systems</title><author>Er, Guo-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-155941b4b753752b576bdab1e552e43227cc153b06cad1e952f3197a6f16c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Probability theory, stochastic processes, and statistics</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Er, Guo-Kang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Er, Guo-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential closure method for some randomly excited non-linear systems</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2000</date><risdate>2000</risdate><volume>35</volume><issue>1</issue><spage>69</spage><epage>78</epage><pages>69-78</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><coden>IJNMAG</coden><abstract>The probability density function (PDF) of the responses of non-linear stochastic system excited by white noise is approximated with the exponential function of polynomial in state variables. Special measure is taken to satisfy FPK equation in the weak sense of integration with the assumed PDF. Gaussian closure method is a special case of the proposed method. Examples are given to show the application of the method to the systems with additive random excitations and those with both additive and multiplicative random excitations. The PDFs obtained with the proposed method and conventional Gaussian closure method are compared with obtainable exact ones. Numerical results showed that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7462(98)00088-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2000, Vol.35 (1), p.69-78
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_miscellaneous_26621939
source Access via ScienceDirect (Elsevier)
subjects Exact sciences and technology
Mathematical methods in physics
Physics
Probability theory, stochastic processes, and statistics
Stochastic processes
title Exponential closure method for some randomly excited non-linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20closure%20method%20for%20some%20randomly%20excited%20non-linear%20systems&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Er,%20Guo-Kang&rft.date=2000&rft.volume=35&rft.issue=1&rft.spage=69&rft.epage=78&rft.pages=69-78&rft.issn=0020-7462&rft.eissn=1878-5638&rft.coden=IJNMAG&rft_id=info:doi/10.1016/S0020-7462(98)00088-2&rft_dat=%3Cproquest_cross%3E26621939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26621939&rft_id=info:pmid/&rft_els_id=S0020746298000882&rfr_iscdi=true