Evaluation of Ground-Penetrating Radar to Detect Free-Phase Hydrocarbons in Fractured Rocks-Results of Numerical Modeling and Physical Experiments

The suitability of common‐offset ground‐penetrating radar (GPR) to detect free‐phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one‐ and two‐dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground water 2000-11, Vol.38 (6), p.929-938
Hauptverfasser: Lane Jr, J.W., Buursink, M.L., Haeni, F.P., Versteeg, R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 6
container_start_page 929
container_title Ground water
container_volume 38
creator Lane Jr, J.W.
Buursink, M.L.
Haeni, F.P.
Versteeg, R.J.
description The suitability of common‐offset ground‐penetrating radar (GPR) to detect free‐phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one‐ and two‐dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air‐filled and hydrocarbon‐filled fractures generate low‐amplitude reflections that are in‐phase with the transmitted pulse. Water‐filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air‐filled or hydrocarbon‐filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water‐filled fracture reflections from air‐ or hydrocarbon‐filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common‐offset GPR reflection methods for detection of hydrocarbon‐filled fractures will be problematic. Ideal cases will require appropriately processed, high‐quality GPR data, ground‐truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.
doi_str_mv 10.1111/j.1745-6584.2000.tb00693.x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_26620062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A68279108</galeid><sourcerecordid>A68279108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5739-d21a209fccf06f611e92d5fc951c255166b7400c02e461017da16a48fb23116a3</originalsourceid><addsrcrecordid>eNqVksGO0zAQhiMEEmXhHaw9cCLFdmKn5oJKabtIpZSqsNws15l0003tYjvQvgZPjLOt9oBWWmEfbM1888vj-ZPkkuA-ievttk-KnKWcDfI-xRj3wxpjLrL-4UnSu089TXoYkyLNefHjefLC-21EM4FFL_kz_qWaVoXaGmQrNHW2NWW6AAPBxajZoKUqlUPBoo8QQAc0cQDp4kZ5QFfH0lmt3Noaj2oTU0qH1kGJllbf-nQJvm2C74Tn7Q5crVWDPtsSmk5YmRItbo7-Ljo-7GN-Byb4l8mzSjUeXp3Pi-TbZLwaXaWzL9NPo-EsVazIRFpSoigWldYV5hUnBAQtWaUFI5oyRjhfFznGGlPIOYntl4pwlQ-qNc1IvGUXyeuT7t7Zny34IHe119A0yoBtvaScxy_l9FGQFAURhIrHwZxxygSP4OU_4Na2zsRuJc34gGHKO7U3J2ijGpC1qWwcid7E0TjVWANVHcNDPqCFIHgQ8fQBPO4SdrV-iH934rWz3juo5D4OQLmjJFh25pJb2TlIdg6Snbnk2VzyEIvfn4p_R9Hjf1TK6fVwJe7-6vzc2gc43Csodyt5kRVMXs-n8sP862g2ma7k9-wvy4LmkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236850269</pqid></control><display><type>article</type><title>Evaluation of Ground-Penetrating Radar to Detect Free-Phase Hydrocarbons in Fractured Rocks-Results of Numerical Modeling and Physical Experiments</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lane Jr, J.W. ; Buursink, M.L. ; Haeni, F.P. ; Versteeg, R.J.</creator><creatorcontrib>Lane Jr, J.W. ; Buursink, M.L. ; Haeni, F.P. ; Versteeg, R.J.</creatorcontrib><description>The suitability of common‐offset ground‐penetrating radar (GPR) to detect free‐phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one‐ and two‐dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air‐filled and hydrocarbon‐filled fractures generate low‐amplitude reflections that are in‐phase with the transmitted pulse. Water‐filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air‐filled or hydrocarbon‐filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water‐filled fracture reflections from air‐ or hydrocarbon‐filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common‐offset GPR reflection methods for detection of hydrocarbon‐filled fractures will be problematic. Ideal cases will require appropriately processed, high‐quality GPR data, ground‐truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/j.1745-6584.2000.tb00693.x</identifier><identifier>CODEN: GRWAAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Environmental aspects ; Experiments ; Groundwater ; Hydrocarbons ; Hydrogeology ; Mathematical models ; Methods ; Radar ; Stone ; Water, Underground</subject><ispartof>Ground water, 2000-11, Vol.38 (6), p.929-938</ispartof><rights>COPYRIGHT 2000 National Ground Water Association</rights><rights>Copyright Ground Water Publishing Company Nov/Dec 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5739-d21a209fccf06f611e92d5fc951c255166b7400c02e461017da16a48fb23116a3</citedby><cites>FETCH-LOGICAL-a5739-d21a209fccf06f611e92d5fc951c255166b7400c02e461017da16a48fb23116a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1745-6584.2000.tb00693.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1745-6584.2000.tb00693.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lane Jr, J.W.</creatorcontrib><creatorcontrib>Buursink, M.L.</creatorcontrib><creatorcontrib>Haeni, F.P.</creatorcontrib><creatorcontrib>Versteeg, R.J.</creatorcontrib><title>Evaluation of Ground-Penetrating Radar to Detect Free-Phase Hydrocarbons in Fractured Rocks-Results of Numerical Modeling and Physical Experiments</title><title>Ground water</title><description>The suitability of common‐offset ground‐penetrating radar (GPR) to detect free‐phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one‐ and two‐dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air‐filled and hydrocarbon‐filled fractures generate low‐amplitude reflections that are in‐phase with the transmitted pulse. Water‐filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air‐filled or hydrocarbon‐filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water‐filled fracture reflections from air‐ or hydrocarbon‐filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common‐offset GPR reflection methods for detection of hydrocarbon‐filled fractures will be problematic. Ideal cases will require appropriately processed, high‐quality GPR data, ground‐truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.</description><subject>Aquifers</subject><subject>Environmental aspects</subject><subject>Experiments</subject><subject>Groundwater</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Radar</subject><subject>Stone</subject><subject>Water, Underground</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqVksGO0zAQhiMEEmXhHaw9cCLFdmKn5oJKabtIpZSqsNws15l0003tYjvQvgZPjLOt9oBWWmEfbM1888vj-ZPkkuA-ievttk-KnKWcDfI-xRj3wxpjLrL-4UnSu089TXoYkyLNefHjefLC-21EM4FFL_kz_qWaVoXaGmQrNHW2NWW6AAPBxajZoKUqlUPBoo8QQAc0cQDp4kZ5QFfH0lmt3Noaj2oTU0qH1kGJllbf-nQJvm2C74Tn7Q5crVWDPtsSmk5YmRItbo7-Ljo-7GN-Byb4l8mzSjUeXp3Pi-TbZLwaXaWzL9NPo-EsVazIRFpSoigWldYV5hUnBAQtWaUFI5oyRjhfFznGGlPIOYntl4pwlQ-qNc1IvGUXyeuT7t7Zny34IHe119A0yoBtvaScxy_l9FGQFAURhIrHwZxxygSP4OU_4Na2zsRuJc34gGHKO7U3J2ijGpC1qWwcid7E0TjVWANVHcNDPqCFIHgQ8fQBPO4SdrV-iH934rWz3juo5D4OQLmjJFh25pJb2TlIdg6Snbnk2VzyEIvfn4p_R9Hjf1TK6fVwJe7-6vzc2gc43Csodyt5kRVMXs-n8sP862g2ma7k9-wvy4LmkQ</recordid><startdate>200011</startdate><enddate>200011</enddate><creator>Lane Jr, J.W.</creator><creator>Buursink, M.L.</creator><creator>Haeni, F.P.</creator><creator>Versteeg, R.J.</creator><general>Blackwell Publishing Ltd</general><general>National Ground Water Association</general><general>Ground Water Publishing Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200011</creationdate><title>Evaluation of Ground-Penetrating Radar to Detect Free-Phase Hydrocarbons in Fractured Rocks-Results of Numerical Modeling and Physical Experiments</title><author>Lane Jr, J.W. ; Buursink, M.L. ; Haeni, F.P. ; Versteeg, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5739-d21a209fccf06f611e92d5fc951c255166b7400c02e461017da16a48fb23116a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aquifers</topic><topic>Environmental aspects</topic><topic>Experiments</topic><topic>Groundwater</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Radar</topic><topic>Stone</topic><topic>Water, Underground</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lane Jr, J.W.</creatorcontrib><creatorcontrib>Buursink, M.L.</creatorcontrib><creatorcontrib>Haeni, F.P.</creatorcontrib><creatorcontrib>Versteeg, R.J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ground water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lane Jr, J.W.</au><au>Buursink, M.L.</au><au>Haeni, F.P.</au><au>Versteeg, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Ground-Penetrating Radar to Detect Free-Phase Hydrocarbons in Fractured Rocks-Results of Numerical Modeling and Physical Experiments</atitle><jtitle>Ground water</jtitle><date>2000-11</date><risdate>2000</risdate><volume>38</volume><issue>6</issue><spage>929</spage><epage>938</epage><pages>929-938</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><coden>GRWAAP</coden><abstract>The suitability of common‐offset ground‐penetrating radar (GPR) to detect free‐phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one‐ and two‐dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air‐filled and hydrocarbon‐filled fractures generate low‐amplitude reflections that are in‐phase with the transmitted pulse. Water‐filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air‐filled or hydrocarbon‐filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water‐filled fracture reflections from air‐ or hydrocarbon‐filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common‐offset GPR reflection methods for detection of hydrocarbon‐filled fractures will be problematic. Ideal cases will require appropriately processed, high‐quality GPR data, ground‐truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1745-6584.2000.tb00693.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-467X
ispartof Ground water, 2000-11, Vol.38 (6), p.929-938
issn 0017-467X
1745-6584
language eng
recordid cdi_proquest_miscellaneous_26620062
source Wiley Online Library - AutoHoldings Journals
subjects Aquifers
Environmental aspects
Experiments
Groundwater
Hydrocarbons
Hydrogeology
Mathematical models
Methods
Radar
Stone
Water, Underground
title Evaluation of Ground-Penetrating Radar to Detect Free-Phase Hydrocarbons in Fractured Rocks-Results of Numerical Modeling and Physical Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Ground-Penetrating%20Radar%20to%20Detect%20Free-Phase%20Hydrocarbons%20in%20Fractured%20Rocks-Results%20of%20Numerical%20Modeling%20and%20Physical%20Experiments&rft.jtitle=Ground%20water&rft.au=Lane%20Jr,%20J.W.&rft.date=2000-11&rft.volume=38&rft.issue=6&rft.spage=929&rft.epage=938&rft.pages=929-938&rft.issn=0017-467X&rft.eissn=1745-6584&rft.coden=GRWAAP&rft_id=info:doi/10.1111/j.1745-6584.2000.tb00693.x&rft_dat=%3Cgale_proqu%3EA68279108%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236850269&rft_id=info:pmid/&rft_galeid=A68279108&rfr_iscdi=true