The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode
Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrod...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 1999-06, Vol.34 (12), p.2773-2779 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2779 |
---|---|
container_issue | 12 |
container_start_page | 2773 |
container_title | Journal of materials science |
container_volume | 34 |
creator | Wang, Yanqin Hao, Yanzhong Cheng, Humin Ma, Jiming Xu, Bin Li, Weihua Cai, Shengmin |
description | Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte. |
doi_str_mv | 10.1023/A:1004658629133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26619787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259884510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-c42b322be92fe43d1159981487a634d38a2b3dda2980487747d2df1148a945bc3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVJodu0514FKb0Up5qRbEu9hdB8QCCX7aUXo5XGtYJX2kjewP6h_s4qZCklpxneeXh4GcY-gTgHgfLbxXcQQnWt7tCAlG_YCtpeNkoLecJWQiA2qDp4x96X8iCEaHuEFfuznojvprQkmsktObmJtqEs-cDTyJdsYwlLSJFvabFzU7fGpx15vg73yKONyeVDqac5ROJHh6fCbfR8Cr8nyryk2WbuaJ65S_GJcnkW0jgGFyi6A9_YUo01-xXx6__-f74P7O1o50Ifj_OU_bz6sb68ae7ur28vL-4ah2CWxincSMQNGRxJSQ_QGqNB6d52Unmpbb17b9FoUcNe9R79CBWwRrUbJ0_ZlxfvLqfHPZVlqM94bm4jpX0ZsOvA9Lqv4Nkr8CHtc6zdBsTWaK1aEJX6fKRscXYe6ztdKMMuh63NhwEMKtAg_wI_aIoy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259884510</pqid></control><display><type>article</type><title>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</title><source>SpringerNature Journals</source><creator>Wang, Yanqin ; Hao, Yanzhong ; Cheng, Humin ; Ma, Jiming ; Xu, Bin ; Li, Weihua ; Cai, Shengmin</creator><contributor>WCA</contributor><creatorcontrib>Wang, Yanqin ; Hao, Yanzhong ; Cheng, Humin ; Ma, Jiming ; Xu, Bin ; Li, Weihua ; Cai, Shengmin ; WCA</creatorcontrib><description>Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1004658629133</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Cobalt ; Efficiency ; Electrodes ; Energy ; Energy conversion efficiency ; Exact sciences and technology ; Incident light ; Materials science ; Metal ions ; N-type semiconductors ; Nanoparticles ; Natural energy ; Photoelectric effect ; Photoelectric emission ; Photoelectrochemistry ; Photovoltaic cells ; Photovoltaic conversion ; Propylene ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Thickness ; Titanium dioxide ; Transition metals</subject><ispartof>Journal of materials science, 1999-06, Vol.34 (12), p.2773-2779</ispartof><rights>1999 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-c42b322be92fe43d1159981487a634d38a2b3dda2980487747d2df1148a945bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1924181$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>WCA</contributor><creatorcontrib>Wang, Yanqin</creatorcontrib><creatorcontrib>Hao, Yanzhong</creatorcontrib><creatorcontrib>Cheng, Humin</creatorcontrib><creatorcontrib>Ma, Jiming</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Cai, Shengmin</creatorcontrib><title>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</title><title>Journal of materials science</title><description>Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.</description><subject>Applied sciences</subject><subject>Cobalt</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Exact sciences and technology</subject><subject>Incident light</subject><subject>Materials science</subject><subject>Metal ions</subject><subject>N-type semiconductors</subject><subject>Nanoparticles</subject><subject>Natural energy</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrochemistry</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Propylene</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1r3DAQhkVJodu0514FKb0Up5qRbEu9hdB8QCCX7aUXo5XGtYJX2kjewP6h_s4qZCklpxneeXh4GcY-gTgHgfLbxXcQQnWt7tCAlG_YCtpeNkoLecJWQiA2qDp4x96X8iCEaHuEFfuznojvprQkmsktObmJtqEs-cDTyJdsYwlLSJFvabFzU7fGpx15vg73yKONyeVDqac5ROJHh6fCbfR8Cr8nyryk2WbuaJ65S_GJcnkW0jgGFyi6A9_YUo01-xXx6__-f74P7O1o50Ifj_OU_bz6sb68ae7ur28vL-4ah2CWxincSMQNGRxJSQ_QGqNB6d52Unmpbb17b9FoUcNe9R79CBWwRrUbJ0_ZlxfvLqfHPZVlqM94bm4jpX0ZsOvA9Lqv4Nkr8CHtc6zdBsTWaK1aEJX6fKRscXYe6ztdKMMuh63NhwEMKtAg_wI_aIoy</recordid><startdate>19990615</startdate><enddate>19990615</enddate><creator>Wang, Yanqin</creator><creator>Hao, Yanzhong</creator><creator>Cheng, Humin</creator><creator>Ma, Jiming</creator><creator>Xu, Bin</creator><creator>Li, Weihua</creator><creator>Cai, Shengmin</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19990615</creationdate><title>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</title><author>Wang, Yanqin ; Hao, Yanzhong ; Cheng, Humin ; Ma, Jiming ; Xu, Bin ; Li, Weihua ; Cai, Shengmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-c42b322be92fe43d1159981487a634d38a2b3dda2980487747d2df1148a945bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Cobalt</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Exact sciences and technology</topic><topic>Incident light</topic><topic>Materials science</topic><topic>Metal ions</topic><topic>N-type semiconductors</topic><topic>Nanoparticles</topic><topic>Natural energy</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrochemistry</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Propylene</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanqin</creatorcontrib><creatorcontrib>Hao, Yanzhong</creatorcontrib><creatorcontrib>Cheng, Humin</creatorcontrib><creatorcontrib>Ma, Jiming</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Cai, Shengmin</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanqin</au><au>Hao, Yanzhong</au><au>Cheng, Humin</au><au>Ma, Jiming</au><au>Xu, Bin</au><au>Li, Weihua</au><au>Cai, Shengmin</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</atitle><jtitle>Journal of materials science</jtitle><date>1999-06-15</date><risdate>1999</risdate><volume>34</volume><issue>12</issue><spage>2773</spage><epage>2779</epage><pages>2773-2779</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1004658629133</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 1999-06, Vol.34 (12), p.2773-2779 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_26619787 |
source | SpringerNature Journals |
subjects | Applied sciences Cobalt Efficiency Electrodes Energy Energy conversion efficiency Exact sciences and technology Incident light Materials science Metal ions N-type semiconductors Nanoparticles Natural energy Photoelectric effect Photoelectric emission Photoelectrochemistry Photovoltaic cells Photovoltaic conversion Propylene Solar cells Solar cells. Photoelectrochemical cells Solar energy Thickness Titanium dioxide Transition metals |
title | The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20photoelectrochemistry%20of%20transition%20metal-ion-doped%20TiO2%20nanocrystalline%20electrodes%20and%20higher%20solar%20cell%20conversion%20efficiency%20based%20on%20Zn2+-doped%20TiO2%20electrode&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Yanqin&rft.date=1999-06-15&rft.volume=34&rft.issue=12&rft.spage=2773&rft.epage=2779&rft.pages=2773-2779&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1004658629133&rft_dat=%3Cproquest_pasca%3E2259884510%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259884510&rft_id=info:pmid/&rfr_iscdi=true |