The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode

Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 1999-06, Vol.34 (12), p.2773-2779
Hauptverfasser: Wang, Yanqin, Hao, Yanzhong, Cheng, Humin, Ma, Jiming, Xu, Bin, Li, Weihua, Cai, Shengmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2779
container_issue 12
container_start_page 2773
container_title Journal of materials science
container_volume 34
creator Wang, Yanqin
Hao, Yanzhong
Cheng, Humin
Ma, Jiming
Xu, Bin
Li, Weihua
Cai, Shengmin
description Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.
doi_str_mv 10.1023/A:1004658629133
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26619787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259884510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-c42b322be92fe43d1159981487a634d38a2b3dda2980487747d2df1148a945bc3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVJodu0514FKb0Up5qRbEu9hdB8QCCX7aUXo5XGtYJX2kjewP6h_s4qZCklpxneeXh4GcY-gTgHgfLbxXcQQnWt7tCAlG_YCtpeNkoLecJWQiA2qDp4x96X8iCEaHuEFfuznojvprQkmsktObmJtqEs-cDTyJdsYwlLSJFvabFzU7fGpx15vg73yKONyeVDqac5ROJHh6fCbfR8Cr8nyryk2WbuaJ65S_GJcnkW0jgGFyi6A9_YUo01-xXx6__-f74P7O1o50Ifj_OU_bz6sb68ae7ur28vL-4ah2CWxincSMQNGRxJSQ_QGqNB6d52Unmpbb17b9FoUcNe9R79CBWwRrUbJ0_ZlxfvLqfHPZVlqM94bm4jpX0ZsOvA9Lqv4Nkr8CHtc6zdBsTWaK1aEJX6fKRscXYe6ztdKMMuh63NhwEMKtAg_wI_aIoy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259884510</pqid></control><display><type>article</type><title>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</title><source>SpringerNature Journals</source><creator>Wang, Yanqin ; Hao, Yanzhong ; Cheng, Humin ; Ma, Jiming ; Xu, Bin ; Li, Weihua ; Cai, Shengmin</creator><contributor>WCA</contributor><creatorcontrib>Wang, Yanqin ; Hao, Yanzhong ; Cheng, Humin ; Ma, Jiming ; Xu, Bin ; Li, Weihua ; Cai, Shengmin ; WCA</creatorcontrib><description>Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1004658629133</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Cobalt ; Efficiency ; Electrodes ; Energy ; Energy conversion efficiency ; Exact sciences and technology ; Incident light ; Materials science ; Metal ions ; N-type semiconductors ; Nanoparticles ; Natural energy ; Photoelectric effect ; Photoelectric emission ; Photoelectrochemistry ; Photovoltaic cells ; Photovoltaic conversion ; Propylene ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Thickness ; Titanium dioxide ; Transition metals</subject><ispartof>Journal of materials science, 1999-06, Vol.34 (12), p.2773-2779</ispartof><rights>1999 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-c42b322be92fe43d1159981487a634d38a2b3dda2980487747d2df1148a945bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1924181$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>WCA</contributor><creatorcontrib>Wang, Yanqin</creatorcontrib><creatorcontrib>Hao, Yanzhong</creatorcontrib><creatorcontrib>Cheng, Humin</creatorcontrib><creatorcontrib>Ma, Jiming</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Cai, Shengmin</creatorcontrib><title>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</title><title>Journal of materials science</title><description>Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.</description><subject>Applied sciences</subject><subject>Cobalt</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Exact sciences and technology</subject><subject>Incident light</subject><subject>Materials science</subject><subject>Metal ions</subject><subject>N-type semiconductors</subject><subject>Nanoparticles</subject><subject>Natural energy</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrochemistry</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Propylene</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1r3DAQhkVJodu0514FKb0Up5qRbEu9hdB8QCCX7aUXo5XGtYJX2kjewP6h_s4qZCklpxneeXh4GcY-gTgHgfLbxXcQQnWt7tCAlG_YCtpeNkoLecJWQiA2qDp4x96X8iCEaHuEFfuznojvprQkmsktObmJtqEs-cDTyJdsYwlLSJFvabFzU7fGpx15vg73yKONyeVDqac5ROJHh6fCbfR8Cr8nyryk2WbuaJ65S_GJcnkW0jgGFyi6A9_YUo01-xXx6__-f74P7O1o50Ifj_OU_bz6sb68ae7ur28vL-4ah2CWxincSMQNGRxJSQ_QGqNB6d52Unmpbb17b9FoUcNe9R79CBWwRrUbJ0_ZlxfvLqfHPZVlqM94bm4jpX0ZsOvA9Lqv4Nkr8CHtc6zdBsTWaK1aEJX6fKRscXYe6ztdKMMuh63NhwEMKtAg_wI_aIoy</recordid><startdate>19990615</startdate><enddate>19990615</enddate><creator>Wang, Yanqin</creator><creator>Hao, Yanzhong</creator><creator>Cheng, Humin</creator><creator>Ma, Jiming</creator><creator>Xu, Bin</creator><creator>Li, Weihua</creator><creator>Cai, Shengmin</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19990615</creationdate><title>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</title><author>Wang, Yanqin ; Hao, Yanzhong ; Cheng, Humin ; Ma, Jiming ; Xu, Bin ; Li, Weihua ; Cai, Shengmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-c42b322be92fe43d1159981487a634d38a2b3dda2980487747d2df1148a945bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Cobalt</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Exact sciences and technology</topic><topic>Incident light</topic><topic>Materials science</topic><topic>Metal ions</topic><topic>N-type semiconductors</topic><topic>Nanoparticles</topic><topic>Natural energy</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrochemistry</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Propylene</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanqin</creatorcontrib><creatorcontrib>Hao, Yanzhong</creatorcontrib><creatorcontrib>Cheng, Humin</creatorcontrib><creatorcontrib>Ma, Jiming</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Cai, Shengmin</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanqin</au><au>Hao, Yanzhong</au><au>Cheng, Humin</au><au>Ma, Jiming</au><au>Xu, Bin</au><au>Li, Weihua</au><au>Cai, Shengmin</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode</atitle><jtitle>Journal of materials science</jtitle><date>1999-06-15</date><risdate>1999</risdate><volume>34</volume><issue>12</issue><spage>2773</spage><epage>2779</epage><pages>2773-2779</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1004658629133</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 1999-06, Vol.34 (12), p.2773-2779
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_26619787
source SpringerNature Journals
subjects Applied sciences
Cobalt
Efficiency
Electrodes
Energy
Energy conversion efficiency
Exact sciences and technology
Incident light
Materials science
Metal ions
N-type semiconductors
Nanoparticles
Natural energy
Photoelectric effect
Photoelectric emission
Photoelectrochemistry
Photovoltaic cells
Photovoltaic conversion
Propylene
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Thickness
Titanium dioxide
Transition metals
title The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20photoelectrochemistry%20of%20transition%20metal-ion-doped%20TiO2%20nanocrystalline%20electrodes%20and%20higher%20solar%20cell%20conversion%20efficiency%20based%20on%20Zn2+-doped%20TiO2%20electrode&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Yanqin&rft.date=1999-06-15&rft.volume=34&rft.issue=12&rft.spage=2773&rft.epage=2779&rft.pages=2773-2779&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1004658629133&rft_dat=%3Cproquest_pasca%3E2259884510%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259884510&rft_id=info:pmid/&rfr_iscdi=true