High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent

A novel permittivity adjustable ultralight microwave absorbent was achieved by constructing efficient high aspect-ratio Sycamore biomass microtube networks. [Display omitted] •High aspect-ratio CMT successfully synthesized derived from Sycamore biomass fiber.•ZnO/PCMT achieved great EAB performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-09, Vol.622, p.719-727
Hauptverfasser: Wu, Songsong, Fu, Hui, Hu, Xinsen, Ding, Chunyan, Yan, Xu, Gu, Hao, Ren, Xiaozhen, Zhang, Hua, Wen, Guangwu, Huang, Xiaoxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue
container_start_page 719
container_title Journal of colloid and interface science
container_volume 622
creator Wu, Songsong
Fu, Hui
Hu, Xinsen
Ding, Chunyan
Yan, Xu
Gu, Hao
Ren, Xiaozhen
Zhang, Hua
Wen, Guangwu
Huang, Xiaoxiao
description A novel permittivity adjustable ultralight microwave absorbent was achieved by constructing efficient high aspect-ratio Sycamore biomass microtube networks. [Display omitted] •High aspect-ratio CMT successfully synthesized derived from Sycamore biomass fiber.•ZnO/PCMT achieved great EAB performance at ultralow filler loading of 6.7 wt.%.•Such excellent EMW performance can be attributed to its unique 1D carbon microtube unit constructed network structure.•Heterogeneous structure constructed by columnar ZnO and carbon skeleton increases the interfacial polarization. Excessive conductivity of carbon-based materials led to poor impedance matching, hindering their electromagnetic absorbing application in aerospace and military fields. While, one-dimensional carbon materials are more favorable to build networks, satisfying impedance matching. One-dimensional carbon materials, such as carbon fibers, carbon nanotubes, carbon microtubes, etc., are recently limited by strict preparation and hard to industrialize. Inspired by the traditional handicraft of candied haw, ZnO/porous carbon micron tubes (ZnO/PCMT), are achieved by conducting a dip-coating and thermal etching process on recycling the abandoned Sycamore microtube. The prepared ZnO/PCMT exhibits higher specific surface area (1076m2g−1) and excellent microwave absorption performance. With a filler loading of only 6.7wt.%, the ZnO/PCMT achieved a great electromagnetic wave absorbing performance. Such excellent ultralight absorption performance can be attributed to their distinct hollow tubular structure of Sycamore based carbon microtube, which can easily construct conductive networks, improving the impedance matching. This work expands a new direction for the development of one-dimensional natural Sycamore microtube as ultra-light and broadband high-performance microwave absorbing materials.
doi_str_mv 10.1016/j.jcis.2022.04.128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661954946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002197972200697X</els_id><sourcerecordid>2661954946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-978897aae4dd70b95985defe59c289b346799b3f440ff71f25ea580c7c0bf6d93</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EokPLH2CBvGSTYDt2EktsUAUtUiU2sLb88QKOkvHg5wyaf1-PpmXJ6m3uPbrvEPKOs5Yz3n-c29lHbAUTomWy5WJ8QXacadUMnHUvyY4xwRs96OGKvEGcGeNcKf2aXHVKdZ0c-x1J9_HXb2rxAL402ZaYKJ68XVMG6mJaLSJdo8-pbA6oT3ssefMFAj1AXmMp8RjLidowb1isW4BuS8l2qdRyKf61R6DWYcoO9uWGvJrsgvD26V6Tn1-__Li9bx6-3327_fzQ-E71pY4eRz1YCzKEgTmt9KgCTKC0F6N2newHXc8kJZumgU9CgVUj84NnbuqD7q7Jhwv3kNOfDbCYNaKHZbF7SBsa0fdcK6llX6PiEq1jETNM5pDjavPJcGbOos1szqLNWbRh0lTRtfT-ib-5FcK_yrPZGvh0CUD98hghG_QR9h5CzNW1CSn-j_8IAjOSmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661954946</pqid></control><display><type>article</type><title>High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Songsong ; Fu, Hui ; Hu, Xinsen ; Ding, Chunyan ; Yan, Xu ; Gu, Hao ; Ren, Xiaozhen ; Zhang, Hua ; Wen, Guangwu ; Huang, Xiaoxiao</creator><creatorcontrib>Wu, Songsong ; Fu, Hui ; Hu, Xinsen ; Ding, Chunyan ; Yan, Xu ; Gu, Hao ; Ren, Xiaozhen ; Zhang, Hua ; Wen, Guangwu ; Huang, Xiaoxiao</creatorcontrib><description>A novel permittivity adjustable ultralight microwave absorbent was achieved by constructing efficient high aspect-ratio Sycamore biomass microtube networks. [Display omitted] •High aspect-ratio CMT successfully synthesized derived from Sycamore biomass fiber.•ZnO/PCMT achieved great EAB performance at ultralow filler loading of 6.7 wt.%.•Such excellent EMW performance can be attributed to its unique 1D carbon microtube unit constructed network structure.•Heterogeneous structure constructed by columnar ZnO and carbon skeleton increases the interfacial polarization. Excessive conductivity of carbon-based materials led to poor impedance matching, hindering their electromagnetic absorbing application in aerospace and military fields. While, one-dimensional carbon materials are more favorable to build networks, satisfying impedance matching. One-dimensional carbon materials, such as carbon fibers, carbon nanotubes, carbon microtubes, etc., are recently limited by strict preparation and hard to industrialize. Inspired by the traditional handicraft of candied haw, ZnO/porous carbon micron tubes (ZnO/PCMT), are achieved by conducting a dip-coating and thermal etching process on recycling the abandoned Sycamore microtube. The prepared ZnO/PCMT exhibits higher specific surface area (1076m2g−1) and excellent microwave absorption performance. With a filler loading of only 6.7wt.%, the ZnO/PCMT achieved a great electromagnetic wave absorbing performance. Such excellent ultralight absorption performance can be attributed to their distinct hollow tubular structure of Sycamore based carbon microtube, which can easily construct conductive networks, improving the impedance matching. This work expands a new direction for the development of one-dimensional natural Sycamore microtube as ultra-light and broadband high-performance microwave absorbing materials.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.04.128</identifier><identifier>PMID: 35533486</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Carbon microtube ; Electromagnetic wave absorption ; Low filler loading ; Network structure ; One-dimensional</subject><ispartof>Journal of colloid and interface science, 2022-09, Vol.622, p.719-727</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-978897aae4dd70b95985defe59c289b346799b3f440ff71f25ea580c7c0bf6d93</citedby><cites>FETCH-LOGICAL-c356t-978897aae4dd70b95985defe59c289b346799b3f440ff71f25ea580c7c0bf6d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002197972200697X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35533486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Songsong</creatorcontrib><creatorcontrib>Fu, Hui</creatorcontrib><creatorcontrib>Hu, Xinsen</creatorcontrib><creatorcontrib>Ding, Chunyan</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Gu, Hao</creatorcontrib><creatorcontrib>Ren, Xiaozhen</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Wen, Guangwu</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><title>High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>A novel permittivity adjustable ultralight microwave absorbent was achieved by constructing efficient high aspect-ratio Sycamore biomass microtube networks. [Display omitted] •High aspect-ratio CMT successfully synthesized derived from Sycamore biomass fiber.•ZnO/PCMT achieved great EAB performance at ultralow filler loading of 6.7 wt.%.•Such excellent EMW performance can be attributed to its unique 1D carbon microtube unit constructed network structure.•Heterogeneous structure constructed by columnar ZnO and carbon skeleton increases the interfacial polarization. Excessive conductivity of carbon-based materials led to poor impedance matching, hindering their electromagnetic absorbing application in aerospace and military fields. While, one-dimensional carbon materials are more favorable to build networks, satisfying impedance matching. One-dimensional carbon materials, such as carbon fibers, carbon nanotubes, carbon microtubes, etc., are recently limited by strict preparation and hard to industrialize. Inspired by the traditional handicraft of candied haw, ZnO/porous carbon micron tubes (ZnO/PCMT), are achieved by conducting a dip-coating and thermal etching process on recycling the abandoned Sycamore microtube. The prepared ZnO/PCMT exhibits higher specific surface area (1076m2g−1) and excellent microwave absorption performance. With a filler loading of only 6.7wt.%, the ZnO/PCMT achieved a great electromagnetic wave absorbing performance. Such excellent ultralight absorption performance can be attributed to their distinct hollow tubular structure of Sycamore based carbon microtube, which can easily construct conductive networks, improving the impedance matching. This work expands a new direction for the development of one-dimensional natural Sycamore microtube as ultra-light and broadband high-performance microwave absorbing materials.</description><subject>Carbon microtube</subject><subject>Electromagnetic wave absorption</subject><subject>Low filler loading</subject><subject>Network structure</subject><subject>One-dimensional</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAURS0EokPLH2CBvGSTYDt2EktsUAUtUiU2sLb88QKOkvHg5wyaf1-PpmXJ6m3uPbrvEPKOs5Yz3n-c29lHbAUTomWy5WJ8QXacadUMnHUvyY4xwRs96OGKvEGcGeNcKf2aXHVKdZ0c-x1J9_HXb2rxAL402ZaYKJ68XVMG6mJaLSJdo8-pbA6oT3ssefMFAj1AXmMp8RjLidowb1isW4BuS8l2qdRyKf61R6DWYcoO9uWGvJrsgvD26V6Tn1-__Li9bx6-3327_fzQ-E71pY4eRz1YCzKEgTmt9KgCTKC0F6N2newHXc8kJZumgU9CgVUj84NnbuqD7q7Jhwv3kNOfDbCYNaKHZbF7SBsa0fdcK6llX6PiEq1jETNM5pDjavPJcGbOos1szqLNWbRh0lTRtfT-ib-5FcK_yrPZGvh0CUD98hghG_QR9h5CzNW1CSn-j_8IAjOSmw</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Wu, Songsong</creator><creator>Fu, Hui</creator><creator>Hu, Xinsen</creator><creator>Ding, Chunyan</creator><creator>Yan, Xu</creator><creator>Gu, Hao</creator><creator>Ren, Xiaozhen</creator><creator>Zhang, Hua</creator><creator>Wen, Guangwu</creator><creator>Huang, Xiaoxiao</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220915</creationdate><title>High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent</title><author>Wu, Songsong ; Fu, Hui ; Hu, Xinsen ; Ding, Chunyan ; Yan, Xu ; Gu, Hao ; Ren, Xiaozhen ; Zhang, Hua ; Wen, Guangwu ; Huang, Xiaoxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-978897aae4dd70b95985defe59c289b346799b3f440ff71f25ea580c7c0bf6d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon microtube</topic><topic>Electromagnetic wave absorption</topic><topic>Low filler loading</topic><topic>Network structure</topic><topic>One-dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Songsong</creatorcontrib><creatorcontrib>Fu, Hui</creatorcontrib><creatorcontrib>Hu, Xinsen</creatorcontrib><creatorcontrib>Ding, Chunyan</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Gu, Hao</creatorcontrib><creatorcontrib>Ren, Xiaozhen</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Wen, Guangwu</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Songsong</au><au>Fu, Hui</au><au>Hu, Xinsen</au><au>Ding, Chunyan</au><au>Yan, Xu</au><au>Gu, Hao</au><au>Ren, Xiaozhen</au><au>Zhang, Hua</au><au>Wen, Guangwu</au><au>Huang, Xiaoxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-09-15</date><risdate>2022</risdate><volume>622</volume><spage>719</spage><epage>727</epage><pages>719-727</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>A novel permittivity adjustable ultralight microwave absorbent was achieved by constructing efficient high aspect-ratio Sycamore biomass microtube networks. [Display omitted] •High aspect-ratio CMT successfully synthesized derived from Sycamore biomass fiber.•ZnO/PCMT achieved great EAB performance at ultralow filler loading of 6.7 wt.%.•Such excellent EMW performance can be attributed to its unique 1D carbon microtube unit constructed network structure.•Heterogeneous structure constructed by columnar ZnO and carbon skeleton increases the interfacial polarization. Excessive conductivity of carbon-based materials led to poor impedance matching, hindering their electromagnetic absorbing application in aerospace and military fields. While, one-dimensional carbon materials are more favorable to build networks, satisfying impedance matching. One-dimensional carbon materials, such as carbon fibers, carbon nanotubes, carbon microtubes, etc., are recently limited by strict preparation and hard to industrialize. Inspired by the traditional handicraft of candied haw, ZnO/porous carbon micron tubes (ZnO/PCMT), are achieved by conducting a dip-coating and thermal etching process on recycling the abandoned Sycamore microtube. The prepared ZnO/PCMT exhibits higher specific surface area (1076m2g−1) and excellent microwave absorption performance. With a filler loading of only 6.7wt.%, the ZnO/PCMT achieved a great electromagnetic wave absorbing performance. Such excellent ultralight absorption performance can be attributed to their distinct hollow tubular structure of Sycamore based carbon microtube, which can easily construct conductive networks, improving the impedance matching. This work expands a new direction for the development of one-dimensional natural Sycamore microtube as ultra-light and broadband high-performance microwave absorbing materials.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35533486</pmid><doi>10.1016/j.jcis.2022.04.128</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-09, Vol.622, p.719-727
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2661954946
source Elsevier ScienceDirect Journals
subjects Carbon microtube
Electromagnetic wave absorption
Low filler loading
Network structure
One-dimensional
title High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20aspect-ratio%20sycamore%20biomass%20microtube%20constructed%20permittivity%20adjustable%20ultralight%20microwave%20absorbent&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wu,%20Songsong&rft.date=2022-09-15&rft.volume=622&rft.spage=719&rft.epage=727&rft.pages=719-727&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.04.128&rft_dat=%3Cproquest_cross%3E2661954946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661954946&rft_id=info:pmid/35533486&rft_els_id=S002197972200697X&rfr_iscdi=true