Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation

In this study, nitrogen self-doping layered graphitic biochar (Na-BC900) was prepared by catalytic pyrolysis of lotus leaves at 900 °C, in the presence of NaCl catalyst, for peroxydisulfate (PDS) activation and sulfamethoxazole (SMX) degradation. NaCl as catalyst played a crucial part in the prepara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-09, Vol.302, p.134868-134868, Article 134868
Hauptverfasser: Liu, Fan, Ding, Jing, Zhao, Guanshu, Zhao, Qingliang, Wang, Kun, Wang, Guangzhi, Gao, Qingwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134868
container_issue
container_start_page 134868
container_title Chemosphere (Oxford)
container_volume 302
creator Liu, Fan
Ding, Jing
Zhao, Guanshu
Zhao, Qingliang
Wang, Kun
Wang, Guangzhi
Gao, Qingwei
description In this study, nitrogen self-doping layered graphitic biochar (Na-BC900) was prepared by catalytic pyrolysis of lotus leaves at 900 °C, in the presence of NaCl catalyst, for peroxydisulfate (PDS) activation and sulfamethoxazole (SMX) degradation. NaCl as catalyst played a crucial part in the preparation of Na-BC900 and could be reused. The SMX degradation rate in Na-BC900/PDS system was 12 times higher than that in un-modified biochar (BC900)/PDS system. The excellent performance of Na-BC900 for PDS activation was attributed to its large specific surface areas (SSAs), the enhanced graphitization structure and the high graphitic N content. The quenching and electrochemical experiments, electron paramagnetic resonance (EPR) studies inferred that the radicals included SO4•-, •OH, O2•- and the non-radical processes were driven by 1O2 and biochar mediated electron migration. Both radical and non-radical mechanisms contributed to the removal of SMX. Additionally, this catalytic pyrolysis strategy was clarified to be scalable, which can be applied to produce multiple biomass-based biochar catalysts for restoration of polluted water bodies. [Display omitted] •A catalytic pyrolysis strategy was proposed to produce biochar catalysts.•The Na-BC900 presented an efficient performance for SMX degradation.•Molten NaCl enhanced the graphitization process with lower E (KJ mol−1) of pyrolysis.•Molten NaCl could promote the retention of N and the generation of graphitic N.•Both radical and non-radical removal routes contributed to the degradation of SMX.
doi_str_mv 10.1016/j.chemosphere.2022.134868
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661954908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653522013613</els_id><sourcerecordid>2661954908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-84a25e1c2f9b5a8c066f9d15de15187698413c68fe6d224335436ac440c10c103</originalsourceid><addsrcrecordid>eNqNkd-K1DAUxoMo7rj6ChLvvOmYNE2m8U4Gd11YWC_0OmSS05kMaVOTdNi-yj6tKV3FSyEQOHzfd_78EPpAyZYSKj6dt-YEfUjjCSJsa1LXW8qaVrQv0Ia2O1nRWrYv0YaQhleCM36F3qR0JqSYuXyNrhjnjEm226Cnvc7az9kZPM4x-Dm5hEOHfchTwh70BRLuQsRjDHYybjjiweUYjjDgBL6rbBiXotdzmcXiY9TjyS1xBxfMScfP-DvEEtDrwQDWg8U9lPrgUr_mQgyPs3Vp8p3ORWGyu-jswvAWveq0T_Du-b9GP2--_th_q-4fbu_2X-4rw3a7XLWNrjlQU3fywHVriBCdtJRboLwcQ8i2ocyItgNh67phjDdMaNM0xNDlsWv0cc0tK_6aIGXVu2TAez1AmJKqhaCSN5K0RSpXqYkhpQidGqPrdZwVJWpBo87qHzRqQaNWNMX7_rnNdOjB_nX-YVEE-1UAZdmLg6iScVCuZl0Ek5UN7j_a_AYDh6nT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661954908</pqid></control><display><type>article</type><title>Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Fan ; Ding, Jing ; Zhao, Guanshu ; Zhao, Qingliang ; Wang, Kun ; Wang, Guangzhi ; Gao, Qingwei</creator><creatorcontrib>Liu, Fan ; Ding, Jing ; Zhao, Guanshu ; Zhao, Qingliang ; Wang, Kun ; Wang, Guangzhi ; Gao, Qingwei</creatorcontrib><description>In this study, nitrogen self-doping layered graphitic biochar (Na-BC900) was prepared by catalytic pyrolysis of lotus leaves at 900 °C, in the presence of NaCl catalyst, for peroxydisulfate (PDS) activation and sulfamethoxazole (SMX) degradation. NaCl as catalyst played a crucial part in the preparation of Na-BC900 and could be reused. The SMX degradation rate in Na-BC900/PDS system was 12 times higher than that in un-modified biochar (BC900)/PDS system. The excellent performance of Na-BC900 for PDS activation was attributed to its large specific surface areas (SSAs), the enhanced graphitization structure and the high graphitic N content. The quenching and electrochemical experiments, electron paramagnetic resonance (EPR) studies inferred that the radicals included SO4•-, •OH, O2•- and the non-radical processes were driven by 1O2 and biochar mediated electron migration. Both radical and non-radical mechanisms contributed to the removal of SMX. Additionally, this catalytic pyrolysis strategy was clarified to be scalable, which can be applied to produce multiple biomass-based biochar catalysts for restoration of polluted water bodies. [Display omitted] •A catalytic pyrolysis strategy was proposed to produce biochar catalysts.•The Na-BC900 presented an efficient performance for SMX degradation.•Molten NaCl enhanced the graphitization process with lower E (KJ mol−1) of pyrolysis.•Molten NaCl could promote the retention of N and the generation of graphitic N.•Both radical and non-radical removal routes contributed to the degradation of SMX.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2022.134868</identifier><identifier>PMID: 35533937</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biochar ; Graphitization ; Molten salt ; Nitrogen self-doping ; Peroxydisulfate</subject><ispartof>Chemosphere (Oxford), 2022-09, Vol.302, p.134868-134868, Article 134868</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-84a25e1c2f9b5a8c066f9d15de15187698413c68fe6d224335436ac440c10c103</citedby><cites>FETCH-LOGICAL-c377t-84a25e1c2f9b5a8c066f9d15de15187698413c68fe6d224335436ac440c10c103</cites><orcidid>0000-0002-8948-1028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653522013613$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35533937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Ding, Jing</creatorcontrib><creatorcontrib>Zhao, Guanshu</creatorcontrib><creatorcontrib>Zhao, Qingliang</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Wang, Guangzhi</creatorcontrib><creatorcontrib>Gao, Qingwei</creatorcontrib><title>Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>In this study, nitrogen self-doping layered graphitic biochar (Na-BC900) was prepared by catalytic pyrolysis of lotus leaves at 900 °C, in the presence of NaCl catalyst, for peroxydisulfate (PDS) activation and sulfamethoxazole (SMX) degradation. NaCl as catalyst played a crucial part in the preparation of Na-BC900 and could be reused. The SMX degradation rate in Na-BC900/PDS system was 12 times higher than that in un-modified biochar (BC900)/PDS system. The excellent performance of Na-BC900 for PDS activation was attributed to its large specific surface areas (SSAs), the enhanced graphitization structure and the high graphitic N content. The quenching and electrochemical experiments, electron paramagnetic resonance (EPR) studies inferred that the radicals included SO4•-, •OH, O2•- and the non-radical processes were driven by 1O2 and biochar mediated electron migration. Both radical and non-radical mechanisms contributed to the removal of SMX. Additionally, this catalytic pyrolysis strategy was clarified to be scalable, which can be applied to produce multiple biomass-based biochar catalysts for restoration of polluted water bodies. [Display omitted] •A catalytic pyrolysis strategy was proposed to produce biochar catalysts.•The Na-BC900 presented an efficient performance for SMX degradation.•Molten NaCl enhanced the graphitization process with lower E (KJ mol−1) of pyrolysis.•Molten NaCl could promote the retention of N and the generation of graphitic N.•Both radical and non-radical removal routes contributed to the degradation of SMX.</description><subject>Biochar</subject><subject>Graphitization</subject><subject>Molten salt</subject><subject>Nitrogen self-doping</subject><subject>Peroxydisulfate</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkd-K1DAUxoMo7rj6ChLvvOmYNE2m8U4Gd11YWC_0OmSS05kMaVOTdNi-yj6tKV3FSyEQOHzfd_78EPpAyZYSKj6dt-YEfUjjCSJsa1LXW8qaVrQv0Ia2O1nRWrYv0YaQhleCM36F3qR0JqSYuXyNrhjnjEm226Cnvc7az9kZPM4x-Dm5hEOHfchTwh70BRLuQsRjDHYybjjiweUYjjDgBL6rbBiXotdzmcXiY9TjyS1xBxfMScfP-DvEEtDrwQDWg8U9lPrgUr_mQgyPs3Vp8p3ORWGyu-jswvAWveq0T_Du-b9GP2--_th_q-4fbu_2X-4rw3a7XLWNrjlQU3fywHVriBCdtJRboLwcQ8i2ocyItgNh67phjDdMaNM0xNDlsWv0cc0tK_6aIGXVu2TAez1AmJKqhaCSN5K0RSpXqYkhpQidGqPrdZwVJWpBo87qHzRqQaNWNMX7_rnNdOjB_nX-YVEE-1UAZdmLg6iScVCuZl0Ek5UN7j_a_AYDh6nT</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Liu, Fan</creator><creator>Ding, Jing</creator><creator>Zhao, Guanshu</creator><creator>Zhao, Qingliang</creator><creator>Wang, Kun</creator><creator>Wang, Guangzhi</creator><creator>Gao, Qingwei</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8948-1028</orcidid></search><sort><creationdate>202209</creationdate><title>Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation</title><author>Liu, Fan ; Ding, Jing ; Zhao, Guanshu ; Zhao, Qingliang ; Wang, Kun ; Wang, Guangzhi ; Gao, Qingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-84a25e1c2f9b5a8c066f9d15de15187698413c68fe6d224335436ac440c10c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochar</topic><topic>Graphitization</topic><topic>Molten salt</topic><topic>Nitrogen self-doping</topic><topic>Peroxydisulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Ding, Jing</creatorcontrib><creatorcontrib>Zhao, Guanshu</creatorcontrib><creatorcontrib>Zhao, Qingliang</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Wang, Guangzhi</creatorcontrib><creatorcontrib>Gao, Qingwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fan</au><au>Ding, Jing</au><au>Zhao, Guanshu</au><au>Zhao, Qingliang</au><au>Wang, Kun</au><au>Wang, Guangzhi</au><au>Gao, Qingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-09</date><risdate>2022</risdate><volume>302</volume><spage>134868</spage><epage>134868</epage><pages>134868-134868</pages><artnum>134868</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>In this study, nitrogen self-doping layered graphitic biochar (Na-BC900) was prepared by catalytic pyrolysis of lotus leaves at 900 °C, in the presence of NaCl catalyst, for peroxydisulfate (PDS) activation and sulfamethoxazole (SMX) degradation. NaCl as catalyst played a crucial part in the preparation of Na-BC900 and could be reused. The SMX degradation rate in Na-BC900/PDS system was 12 times higher than that in un-modified biochar (BC900)/PDS system. The excellent performance of Na-BC900 for PDS activation was attributed to its large specific surface areas (SSAs), the enhanced graphitization structure and the high graphitic N content. The quenching and electrochemical experiments, electron paramagnetic resonance (EPR) studies inferred that the radicals included SO4•-, •OH, O2•- and the non-radical processes were driven by 1O2 and biochar mediated electron migration. Both radical and non-radical mechanisms contributed to the removal of SMX. Additionally, this catalytic pyrolysis strategy was clarified to be scalable, which can be applied to produce multiple biomass-based biochar catalysts for restoration of polluted water bodies. [Display omitted] •A catalytic pyrolysis strategy was proposed to produce biochar catalysts.•The Na-BC900 presented an efficient performance for SMX degradation.•Molten NaCl enhanced the graphitization process with lower E (KJ mol−1) of pyrolysis.•Molten NaCl could promote the retention of N and the generation of graphitic N.•Both radical and non-radical removal routes contributed to the degradation of SMX.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35533937</pmid><doi>10.1016/j.chemosphere.2022.134868</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8948-1028</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2022-09, Vol.302, p.134868-134868, Article 134868
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2661954908
source Elsevier ScienceDirect Journals
subjects Biochar
Graphitization
Molten salt
Nitrogen self-doping
Peroxydisulfate
title Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20pyrolysis%20of%20lotus%20leaves%20for%20producing%20nitrogen%20self-doping%20layered%20graphitic%20biochar:%20Performance%20and%20mechanism%20for%20peroxydisulfate%20activation&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Liu,%20Fan&rft.date=2022-09&rft.volume=302&rft.spage=134868&rft.epage=134868&rft.pages=134868-134868&rft.artnum=134868&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2022.134868&rft_dat=%3Cproquest_cross%3E2661954908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661954908&rft_id=info:pmid/35533937&rft_els_id=S0045653522013613&rfr_iscdi=true