Topography simulation for the virtual wafer fab

We introduce modeling and simulation of topography evolution during processes used in the fabrication of integrated circuits. After an overview, the presentation is divided into three major sections. In the first section, we consider thermal processes. The first process considered in this section is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2000-04, Vol.365 (2), p.152-175
Hauptverfasser: Cale, Timothy S., Merchant, Tushar P., Borucki, Leonard J., Labun, Andrew H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 2
container_start_page 152
container_title Thin solid films
container_volume 365
creator Cale, Timothy S.
Merchant, Tushar P.
Borucki, Leonard J.
Labun, Andrew H.
description We introduce modeling and simulation of topography evolution during processes used in the fabrication of integrated circuits. After an overview, the presentation is divided into three major sections. In the first section, we consider thermal processes. The first process considered in this section is the chemical vapor deposition (CVD) of SiO 2 from TEOS (tetraethoxysilane). We discuss the use of film profile information to help decide between, and to help refine, kinetic models. The second example deals with thin film flow of doped glasses for planarization applications, and demonstrates model calibration. The second major section demonstrates the state of topography simulation for plasma processes. We demonstrate the use of physically motivated models that require calibration using experimental data for a given set of operating conditions. We first consider the plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide from TEOS and oxygen mixtures (PETEOS). We then consider ionized physical vapor deposition (IPVD) of copper, incorporating results of new calculations on the interactions of gas phase-species with the surface. As the last example in this section, we discuss a reactive ion etch (RIE) model. The last major section presents four applications. First, programmed rate CVD is discussed in some detail, in order to demonstrate how feature scale modeling can be used in process development. Next, the RIE model is used to demonstrate aspect ratio-dependent etching, and to show how simulations can be used to develop engineering relationships. The third example shows how topography simulations can be used to aid process integration studies, and involves PETEOS, etching and reflow simulations. The final example uses the model for PETEOS to demonstrate the roles of ‘3d/2d’ and ‘3d/3d’ (transport dimensionality/surface dimensionality) topography simulators in ‘virtual wafer fabs’.
doi_str_mv 10.1016/S0040-6090(00)00756-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26613590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609000007562</els_id><sourcerecordid>26613590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7febd7a118619895dd8b2b46b9480c20f8c6ff5840426122868fd16c9071de53</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKsfQdiT6GHtS3Y3m5xEiv-g4MHeQzZ5sZFtsya7lX57t1a8Cg_m8pvhzRBySeGWAuWzN4AScg4SrgFuAOqK5-yITKioZc7qgh6TyR9ySs5S-gAAylgxIbNl6MJ71N1qlyW_Hlrd-7DJXIhZv8Js62M_6Db70g5j5nRzTk6cbhNe_OqULB8flvPnfPH69DK_X-SmKESf1w4bW2tKBadSyMpa0bCm5I0sBRgGThjuXCVKKBkfPxFcOEu5kVBTi1UxJVeH2C6GzwFTr9Y-GWxbvcEwJMU4p0UlYQSrA2hiSCmiU130ax13ioLar6N-1lH76gr2N66j2Oi7O_hwLLH1GFUyHjcGrY9oemWD_yfhGxzuapk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26613590</pqid></control><display><type>article</type><title>Topography simulation for the virtual wafer fab</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cale, Timothy S. ; Merchant, Tushar P. ; Borucki, Leonard J. ; Labun, Andrew H.</creator><creatorcontrib>Cale, Timothy S. ; Merchant, Tushar P. ; Borucki, Leonard J. ; Labun, Andrew H.</creatorcontrib><description>We introduce modeling and simulation of topography evolution during processes used in the fabrication of integrated circuits. After an overview, the presentation is divided into three major sections. In the first section, we consider thermal processes. The first process considered in this section is the chemical vapor deposition (CVD) of SiO 2 from TEOS (tetraethoxysilane). We discuss the use of film profile information to help decide between, and to help refine, kinetic models. The second example deals with thin film flow of doped glasses for planarization applications, and demonstrates model calibration. The second major section demonstrates the state of topography simulation for plasma processes. We demonstrate the use of physically motivated models that require calibration using experimental data for a given set of operating conditions. We first consider the plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide from TEOS and oxygen mixtures (PETEOS). We then consider ionized physical vapor deposition (IPVD) of copper, incorporating results of new calculations on the interactions of gas phase-species with the surface. As the last example in this section, we discuss a reactive ion etch (RIE) model. The last major section presents four applications. First, programmed rate CVD is discussed in some detail, in order to demonstrate how feature scale modeling can be used in process development. Next, the RIE model is used to demonstrate aspect ratio-dependent etching, and to show how simulations can be used to develop engineering relationships. The third example shows how topography simulations can be used to aid process integration studies, and involves PETEOS, etching and reflow simulations. The final example uses the model for PETEOS to demonstrate the roles of ‘3d/2d’ and ‘3d/3d’ (transport dimensionality/surface dimensionality) topography simulators in ‘virtual wafer fabs’.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/S0040-6090(00)00756-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deposition ; Etch ; Plasma processes ; Reflow ; Thermal processes ; Topography simulation</subject><ispartof>Thin solid films, 2000-04, Vol.365 (2), p.152-175</ispartof><rights>2000 Elsevier Science S.A.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7febd7a118619895dd8b2b46b9480c20f8c6ff5840426122868fd16c9071de53</citedby><cites>FETCH-LOGICAL-c338t-7febd7a118619895dd8b2b46b9480c20f8c6ff5840426122868fd16c9071de53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0040-6090(00)00756-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cale, Timothy S.</creatorcontrib><creatorcontrib>Merchant, Tushar P.</creatorcontrib><creatorcontrib>Borucki, Leonard J.</creatorcontrib><creatorcontrib>Labun, Andrew H.</creatorcontrib><title>Topography simulation for the virtual wafer fab</title><title>Thin solid films</title><description>We introduce modeling and simulation of topography evolution during processes used in the fabrication of integrated circuits. After an overview, the presentation is divided into three major sections. In the first section, we consider thermal processes. The first process considered in this section is the chemical vapor deposition (CVD) of SiO 2 from TEOS (tetraethoxysilane). We discuss the use of film profile information to help decide between, and to help refine, kinetic models. The second example deals with thin film flow of doped glasses for planarization applications, and demonstrates model calibration. The second major section demonstrates the state of topography simulation for plasma processes. We demonstrate the use of physically motivated models that require calibration using experimental data for a given set of operating conditions. We first consider the plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide from TEOS and oxygen mixtures (PETEOS). We then consider ionized physical vapor deposition (IPVD) of copper, incorporating results of new calculations on the interactions of gas phase-species with the surface. As the last example in this section, we discuss a reactive ion etch (RIE) model. The last major section presents four applications. First, programmed rate CVD is discussed in some detail, in order to demonstrate how feature scale modeling can be used in process development. Next, the RIE model is used to demonstrate aspect ratio-dependent etching, and to show how simulations can be used to develop engineering relationships. The third example shows how topography simulations can be used to aid process integration studies, and involves PETEOS, etching and reflow simulations. The final example uses the model for PETEOS to demonstrate the roles of ‘3d/2d’ and ‘3d/3d’ (transport dimensionality/surface dimensionality) topography simulators in ‘virtual wafer fabs’.</description><subject>Deposition</subject><subject>Etch</subject><subject>Plasma processes</subject><subject>Reflow</subject><subject>Thermal processes</subject><subject>Topography simulation</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKsfQdiT6GHtS3Y3m5xEiv-g4MHeQzZ5sZFtsya7lX57t1a8Cg_m8pvhzRBySeGWAuWzN4AScg4SrgFuAOqK5-yITKioZc7qgh6TyR9ySs5S-gAAylgxIbNl6MJ71N1qlyW_Hlrd-7DJXIhZv8Js62M_6Db70g5j5nRzTk6cbhNe_OqULB8flvPnfPH69DK_X-SmKESf1w4bW2tKBadSyMpa0bCm5I0sBRgGThjuXCVKKBkfPxFcOEu5kVBTi1UxJVeH2C6GzwFTr9Y-GWxbvcEwJMU4p0UlYQSrA2hiSCmiU130ax13ioLar6N-1lH76gr2N66j2Oi7O_hwLLH1GFUyHjcGrY9oemWD_yfhGxzuapk</recordid><startdate>20000417</startdate><enddate>20000417</enddate><creator>Cale, Timothy S.</creator><creator>Merchant, Tushar P.</creator><creator>Borucki, Leonard J.</creator><creator>Labun, Andrew H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20000417</creationdate><title>Topography simulation for the virtual wafer fab</title><author>Cale, Timothy S. ; Merchant, Tushar P. ; Borucki, Leonard J. ; Labun, Andrew H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7febd7a118619895dd8b2b46b9480c20f8c6ff5840426122868fd16c9071de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Deposition</topic><topic>Etch</topic><topic>Plasma processes</topic><topic>Reflow</topic><topic>Thermal processes</topic><topic>Topography simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cale, Timothy S.</creatorcontrib><creatorcontrib>Merchant, Tushar P.</creatorcontrib><creatorcontrib>Borucki, Leonard J.</creatorcontrib><creatorcontrib>Labun, Andrew H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cale, Timothy S.</au><au>Merchant, Tushar P.</au><au>Borucki, Leonard J.</au><au>Labun, Andrew H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topography simulation for the virtual wafer fab</atitle><jtitle>Thin solid films</jtitle><date>2000-04-17</date><risdate>2000</risdate><volume>365</volume><issue>2</issue><spage>152</spage><epage>175</epage><pages>152-175</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><abstract>We introduce modeling and simulation of topography evolution during processes used in the fabrication of integrated circuits. After an overview, the presentation is divided into three major sections. In the first section, we consider thermal processes. The first process considered in this section is the chemical vapor deposition (CVD) of SiO 2 from TEOS (tetraethoxysilane). We discuss the use of film profile information to help decide between, and to help refine, kinetic models. The second example deals with thin film flow of doped glasses for planarization applications, and demonstrates model calibration. The second major section demonstrates the state of topography simulation for plasma processes. We demonstrate the use of physically motivated models that require calibration using experimental data for a given set of operating conditions. We first consider the plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide from TEOS and oxygen mixtures (PETEOS). We then consider ionized physical vapor deposition (IPVD) of copper, incorporating results of new calculations on the interactions of gas phase-species with the surface. As the last example in this section, we discuss a reactive ion etch (RIE) model. The last major section presents four applications. First, programmed rate CVD is discussed in some detail, in order to demonstrate how feature scale modeling can be used in process development. Next, the RIE model is used to demonstrate aspect ratio-dependent etching, and to show how simulations can be used to develop engineering relationships. The third example shows how topography simulations can be used to aid process integration studies, and involves PETEOS, etching and reflow simulations. The final example uses the model for PETEOS to demonstrate the roles of ‘3d/2d’ and ‘3d/3d’ (transport dimensionality/surface dimensionality) topography simulators in ‘virtual wafer fabs’.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0040-6090(00)00756-2</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2000-04, Vol.365 (2), p.152-175
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_26613590
source Access via ScienceDirect (Elsevier)
subjects Deposition
Etch
Plasma processes
Reflow
Thermal processes
Topography simulation
title Topography simulation for the virtual wafer fab
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topography%20simulation%20for%20the%20virtual%20wafer%20fab&rft.jtitle=Thin%20solid%20films&rft.au=Cale,%20Timothy%20S.&rft.date=2000-04-17&rft.volume=365&rft.issue=2&rft.spage=152&rft.epage=175&rft.pages=152-175&rft.issn=0040-6090&rft.eissn=1879-2731&rft_id=info:doi/10.1016/S0040-6090(00)00756-2&rft_dat=%3Cproquest_cross%3E26613590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26613590&rft_id=info:pmid/&rft_els_id=S0040609000007562&rfr_iscdi=true