Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract

The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-07, Vol.299, p.134752-134752, Article 134752
Hauptverfasser: Sodhani, Hriday, Hedaoo, Shantanu, Murugesan, Gokulakrishnan, Pai, Shraddha, Vinayagam, Ramesh, Varadavenkatesan, Thivaharan, Bharath, G., Haija, Mohammad Abu, Nadda, Ashok Kumar, Govarthanan, Muthusamy, Selvaraj, Raja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134752
container_issue
container_start_page 134752
container_title Chemosphere (Oxford)
container_volume 299
creator Sodhani, Hriday
Hedaoo, Shantanu
Murugesan, Gokulakrishnan
Pai, Shraddha
Vinayagam, Ramesh
Varadavenkatesan, Thivaharan
Bharath, G.
Haija, Mohammad Abu
Nadda, Ashok Kumar
Govarthanan, Muthusamy
Selvaraj, Raja
description The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications. [Display omitted] •Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g.
doi_str_mv 10.1016/j.chemosphere.2022.134752
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661089603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653522012450</els_id><sourcerecordid>2675571942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotuWv4DMjUsWf8R2fFxWBSpVogd6tlx7QrxK4mA7qy4S_71Z7YI49jRzeN53pHkQ-kDJmhIqP-3WroMh5qmDBGtGGFtTXivBXqEVbZSuKNPNa7QipBaVFFxcoMucd4QsYaHfogsuBOWk4Sv0Z-NzTFMJe8Bp6dzbHscWb1zw-HM_A6aU4zmH8SfuDj7Fp4OdbAkF8GjHaI_hRxhLxvkwlg5y-A3-zN9DX-LUxTQPeCqQorNpOu7RY3gqybpyjd60ts_w7jyv0MOXmx_bb9Xd96-3281d5XhNSmWpIg042zigwjJCrBOtJVxr1gipGdGqpkp5yWrWampbyVuQXAGjWkto-BX6eOqdUvw1Qy5mCNlB39sR4pwNk0oIRXXNXoBKShotCV9QfUJdijknaM2UwmDTwVBijqLMzvwnyhxFmZOoJfv-fGZ-HMD_S_41swDbEwDLX_YBkskuwOjAhwSuGB_DC848A10Tq_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661089603</pqid></control><display><type>article</type><title>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Sodhani, Hriday ; Hedaoo, Shantanu ; Murugesan, Gokulakrishnan ; Pai, Shraddha ; Vinayagam, Ramesh ; Varadavenkatesan, Thivaharan ; Bharath, G. ; Haija, Mohammad Abu ; Nadda, Ashok Kumar ; Govarthanan, Muthusamy ; Selvaraj, Raja</creator><creatorcontrib>Sodhani, Hriday ; Hedaoo, Shantanu ; Murugesan, Gokulakrishnan ; Pai, Shraddha ; Vinayagam, Ramesh ; Varadavenkatesan, Thivaharan ; Bharath, G. ; Haija, Mohammad Abu ; Nadda, Ashok Kumar ; Govarthanan, Muthusamy ; Selvaraj, Raja</creatorcontrib><description>The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications. [Display omitted] •Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2022.134752</identifier><identifier>PMID: 35513083</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acid blue 113 ; Adsorption ; agitation ; Azo Compounds ; Durapatite ; dyes ; Green synthesis ; heat production ; Hydrogen-Ion Concentration ; Hydroxyapatite ; Kinetics ; Nanoadsorbents ; Peltophorum pterocarpum ; Plant Extracts ; remediation ; sorption isotherms ; surface area ; toxicity ; Water Pollutants, Chemical - analysis</subject><ispartof>Chemosphere (Oxford), 2022-07, Vol.299, p.134752-134752, Article 134752</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</citedby><cites>FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</cites><orcidid>0000-0002-3170-7899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2022.134752$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35513083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sodhani, Hriday</creatorcontrib><creatorcontrib>Hedaoo, Shantanu</creatorcontrib><creatorcontrib>Murugesan, Gokulakrishnan</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Vinayagam, Ramesh</creatorcontrib><creatorcontrib>Varadavenkatesan, Thivaharan</creatorcontrib><creatorcontrib>Bharath, G.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Nadda, Ashok Kumar</creatorcontrib><creatorcontrib>Govarthanan, Muthusamy</creatorcontrib><creatorcontrib>Selvaraj, Raja</creatorcontrib><title>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications. [Display omitted] •Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g.</description><subject>Acid blue 113</subject><subject>Adsorption</subject><subject>agitation</subject><subject>Azo Compounds</subject><subject>Durapatite</subject><subject>dyes</subject><subject>Green synthesis</subject><subject>heat production</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydroxyapatite</subject><subject>Kinetics</subject><subject>Nanoadsorbents</subject><subject>Peltophorum pterocarpum</subject><subject>Plant Extracts</subject><subject>remediation</subject><subject>sorption isotherms</subject><subject>surface area</subject><subject>toxicity</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EotuWv4DMjUsWf8R2fFxWBSpVogd6tlx7QrxK4mA7qy4S_71Z7YI49jRzeN53pHkQ-kDJmhIqP-3WroMh5qmDBGtGGFtTXivBXqEVbZSuKNPNa7QipBaVFFxcoMucd4QsYaHfogsuBOWk4Sv0Z-NzTFMJe8Bp6dzbHscWb1zw-HM_A6aU4zmH8SfuDj7Fp4OdbAkF8GjHaI_hRxhLxvkwlg5y-A3-zN9DX-LUxTQPeCqQorNpOu7RY3gqybpyjd60ts_w7jyv0MOXmx_bb9Xd96-3281d5XhNSmWpIg042zigwjJCrBOtJVxr1gipGdGqpkp5yWrWampbyVuQXAGjWkto-BX6eOqdUvw1Qy5mCNlB39sR4pwNk0oIRXXNXoBKShotCV9QfUJdijknaM2UwmDTwVBijqLMzvwnyhxFmZOoJfv-fGZ-HMD_S_41swDbEwDLX_YBkskuwOjAhwSuGB_DC848A10Tq_k</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Sodhani, Hriday</creator><creator>Hedaoo, Shantanu</creator><creator>Murugesan, Gokulakrishnan</creator><creator>Pai, Shraddha</creator><creator>Vinayagam, Ramesh</creator><creator>Varadavenkatesan, Thivaharan</creator><creator>Bharath, G.</creator><creator>Haija, Mohammad Abu</creator><creator>Nadda, Ashok Kumar</creator><creator>Govarthanan, Muthusamy</creator><creator>Selvaraj, Raja</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3170-7899</orcidid></search><sort><creationdate>202207</creationdate><title>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</title><author>Sodhani, Hriday ; Hedaoo, Shantanu ; Murugesan, Gokulakrishnan ; Pai, Shraddha ; Vinayagam, Ramesh ; Varadavenkatesan, Thivaharan ; Bharath, G. ; Haija, Mohammad Abu ; Nadda, Ashok Kumar ; Govarthanan, Muthusamy ; Selvaraj, Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid blue 113</topic><topic>Adsorption</topic><topic>agitation</topic><topic>Azo Compounds</topic><topic>Durapatite</topic><topic>dyes</topic><topic>Green synthesis</topic><topic>heat production</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydroxyapatite</topic><topic>Kinetics</topic><topic>Nanoadsorbents</topic><topic>Peltophorum pterocarpum</topic><topic>Plant Extracts</topic><topic>remediation</topic><topic>sorption isotherms</topic><topic>surface area</topic><topic>toxicity</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sodhani, Hriday</creatorcontrib><creatorcontrib>Hedaoo, Shantanu</creatorcontrib><creatorcontrib>Murugesan, Gokulakrishnan</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Vinayagam, Ramesh</creatorcontrib><creatorcontrib>Varadavenkatesan, Thivaharan</creatorcontrib><creatorcontrib>Bharath, G.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Nadda, Ashok Kumar</creatorcontrib><creatorcontrib>Govarthanan, Muthusamy</creatorcontrib><creatorcontrib>Selvaraj, Raja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sodhani, Hriday</au><au>Hedaoo, Shantanu</au><au>Murugesan, Gokulakrishnan</au><au>Pai, Shraddha</au><au>Vinayagam, Ramesh</au><au>Varadavenkatesan, Thivaharan</au><au>Bharath, G.</au><au>Haija, Mohammad Abu</au><au>Nadda, Ashok Kumar</au><au>Govarthanan, Muthusamy</au><au>Selvaraj, Raja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-07</date><risdate>2022</risdate><volume>299</volume><spage>134752</spage><epage>134752</epage><pages>134752-134752</pages><artnum>134752</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications. [Display omitted] •Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35513083</pmid><doi>10.1016/j.chemosphere.2022.134752</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3170-7899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2022-07, Vol.299, p.134752-134752, Article 134752
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2661089603
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Acid blue 113
Adsorption
agitation
Azo Compounds
Durapatite
dyes
Green synthesis
heat production
Hydrogen-Ion Concentration
Hydroxyapatite
Kinetics
Nanoadsorbents
Peltophorum pterocarpum
Plant Extracts
remediation
sorption isotherms
surface area
toxicity
Water Pollutants, Chemical - analysis
title Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorptive%20removal%20of%20Acid%20Blue%20113%20using%20hydroxyapatite%20nanoadsorbents%20synthesized%20using%20Peltophorum%20pterocarpum%20pod%20extract&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Sodhani,%20Hriday&rft.date=2022-07&rft.volume=299&rft.spage=134752&rft.epage=134752&rft.pages=134752-134752&rft.artnum=134752&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2022.134752&rft_dat=%3Cproquest_cross%3E2675571942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661089603&rft_id=info:pmid/35513083&rft_els_id=S0045653522012450&rfr_iscdi=true