Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract
The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregati...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2022-07, Vol.299, p.134752-134752, Article 134752 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134752 |
---|---|
container_issue | |
container_start_page | 134752 |
container_title | Chemosphere (Oxford) |
container_volume | 299 |
creator | Sodhani, Hriday Hedaoo, Shantanu Murugesan, Gokulakrishnan Pai, Shraddha Vinayagam, Ramesh Varadavenkatesan, Thivaharan Bharath, G. Haija, Mohammad Abu Nadda, Ashok Kumar Govarthanan, Muthusamy Selvaraj, Raja |
description | The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.
[Display omitted]
•Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g. |
doi_str_mv | 10.1016/j.chemosphere.2022.134752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661089603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653522012450</els_id><sourcerecordid>2675571942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotuWv4DMjUsWf8R2fFxWBSpVogd6tlx7QrxK4mA7qy4S_71Z7YI49jRzeN53pHkQ-kDJmhIqP-3WroMh5qmDBGtGGFtTXivBXqEVbZSuKNPNa7QipBaVFFxcoMucd4QsYaHfogsuBOWk4Sv0Z-NzTFMJe8Bp6dzbHscWb1zw-HM_A6aU4zmH8SfuDj7Fp4OdbAkF8GjHaI_hRxhLxvkwlg5y-A3-zN9DX-LUxTQPeCqQorNpOu7RY3gqybpyjd60ts_w7jyv0MOXmx_bb9Xd96-3281d5XhNSmWpIg042zigwjJCrBOtJVxr1gipGdGqpkp5yWrWampbyVuQXAGjWkto-BX6eOqdUvw1Qy5mCNlB39sR4pwNk0oIRXXNXoBKShotCV9QfUJdijknaM2UwmDTwVBijqLMzvwnyhxFmZOoJfv-fGZ-HMD_S_41swDbEwDLX_YBkskuwOjAhwSuGB_DC848A10Tq_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661089603</pqid></control><display><type>article</type><title>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Sodhani, Hriday ; Hedaoo, Shantanu ; Murugesan, Gokulakrishnan ; Pai, Shraddha ; Vinayagam, Ramesh ; Varadavenkatesan, Thivaharan ; Bharath, G. ; Haija, Mohammad Abu ; Nadda, Ashok Kumar ; Govarthanan, Muthusamy ; Selvaraj, Raja</creator><creatorcontrib>Sodhani, Hriday ; Hedaoo, Shantanu ; Murugesan, Gokulakrishnan ; Pai, Shraddha ; Vinayagam, Ramesh ; Varadavenkatesan, Thivaharan ; Bharath, G. ; Haija, Mohammad Abu ; Nadda, Ashok Kumar ; Govarthanan, Muthusamy ; Selvaraj, Raja</creatorcontrib><description>The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.
[Display omitted]
•Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2022.134752</identifier><identifier>PMID: 35513083</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acid blue 113 ; Adsorption ; agitation ; Azo Compounds ; Durapatite ; dyes ; Green synthesis ; heat production ; Hydrogen-Ion Concentration ; Hydroxyapatite ; Kinetics ; Nanoadsorbents ; Peltophorum pterocarpum ; Plant Extracts ; remediation ; sorption isotherms ; surface area ; toxicity ; Water Pollutants, Chemical - analysis</subject><ispartof>Chemosphere (Oxford), 2022-07, Vol.299, p.134752-134752, Article 134752</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</citedby><cites>FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</cites><orcidid>0000-0002-3170-7899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2022.134752$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35513083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sodhani, Hriday</creatorcontrib><creatorcontrib>Hedaoo, Shantanu</creatorcontrib><creatorcontrib>Murugesan, Gokulakrishnan</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Vinayagam, Ramesh</creatorcontrib><creatorcontrib>Varadavenkatesan, Thivaharan</creatorcontrib><creatorcontrib>Bharath, G.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Nadda, Ashok Kumar</creatorcontrib><creatorcontrib>Govarthanan, Muthusamy</creatorcontrib><creatorcontrib>Selvaraj, Raja</creatorcontrib><title>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.
[Display omitted]
•Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g.</description><subject>Acid blue 113</subject><subject>Adsorption</subject><subject>agitation</subject><subject>Azo Compounds</subject><subject>Durapatite</subject><subject>dyes</subject><subject>Green synthesis</subject><subject>heat production</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydroxyapatite</subject><subject>Kinetics</subject><subject>Nanoadsorbents</subject><subject>Peltophorum pterocarpum</subject><subject>Plant Extracts</subject><subject>remediation</subject><subject>sorption isotherms</subject><subject>surface area</subject><subject>toxicity</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EotuWv4DMjUsWf8R2fFxWBSpVogd6tlx7QrxK4mA7qy4S_71Z7YI49jRzeN53pHkQ-kDJmhIqP-3WroMh5qmDBGtGGFtTXivBXqEVbZSuKNPNa7QipBaVFFxcoMucd4QsYaHfogsuBOWk4Sv0Z-NzTFMJe8Bp6dzbHscWb1zw-HM_A6aU4zmH8SfuDj7Fp4OdbAkF8GjHaI_hRxhLxvkwlg5y-A3-zN9DX-LUxTQPeCqQorNpOu7RY3gqybpyjd60ts_w7jyv0MOXmx_bb9Xd96-3281d5XhNSmWpIg042zigwjJCrBOtJVxr1gipGdGqpkp5yWrWampbyVuQXAGjWkto-BX6eOqdUvw1Qy5mCNlB39sR4pwNk0oIRXXNXoBKShotCV9QfUJdijknaM2UwmDTwVBijqLMzvwnyhxFmZOoJfv-fGZ-HMD_S_41swDbEwDLX_YBkskuwOjAhwSuGB_DC848A10Tq_k</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Sodhani, Hriday</creator><creator>Hedaoo, Shantanu</creator><creator>Murugesan, Gokulakrishnan</creator><creator>Pai, Shraddha</creator><creator>Vinayagam, Ramesh</creator><creator>Varadavenkatesan, Thivaharan</creator><creator>Bharath, G.</creator><creator>Haija, Mohammad Abu</creator><creator>Nadda, Ashok Kumar</creator><creator>Govarthanan, Muthusamy</creator><creator>Selvaraj, Raja</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3170-7899</orcidid></search><sort><creationdate>202207</creationdate><title>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</title><author>Sodhani, Hriday ; Hedaoo, Shantanu ; Murugesan, Gokulakrishnan ; Pai, Shraddha ; Vinayagam, Ramesh ; Varadavenkatesan, Thivaharan ; Bharath, G. ; Haija, Mohammad Abu ; Nadda, Ashok Kumar ; Govarthanan, Muthusamy ; Selvaraj, Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a1708eca8ce15a200ac5fa03992856920974177d6242f91af63fe637e21996e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid blue 113</topic><topic>Adsorption</topic><topic>agitation</topic><topic>Azo Compounds</topic><topic>Durapatite</topic><topic>dyes</topic><topic>Green synthesis</topic><topic>heat production</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydroxyapatite</topic><topic>Kinetics</topic><topic>Nanoadsorbents</topic><topic>Peltophorum pterocarpum</topic><topic>Plant Extracts</topic><topic>remediation</topic><topic>sorption isotherms</topic><topic>surface area</topic><topic>toxicity</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sodhani, Hriday</creatorcontrib><creatorcontrib>Hedaoo, Shantanu</creatorcontrib><creatorcontrib>Murugesan, Gokulakrishnan</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Vinayagam, Ramesh</creatorcontrib><creatorcontrib>Varadavenkatesan, Thivaharan</creatorcontrib><creatorcontrib>Bharath, G.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Nadda, Ashok Kumar</creatorcontrib><creatorcontrib>Govarthanan, Muthusamy</creatorcontrib><creatorcontrib>Selvaraj, Raja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sodhani, Hriday</au><au>Hedaoo, Shantanu</au><au>Murugesan, Gokulakrishnan</au><au>Pai, Shraddha</au><au>Vinayagam, Ramesh</au><au>Varadavenkatesan, Thivaharan</au><au>Bharath, G.</au><au>Haija, Mohammad Abu</au><au>Nadda, Ashok Kumar</au><au>Govarthanan, Muthusamy</au><au>Selvaraj, Raja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-07</date><risdate>2022</risdate><volume>299</volume><spage>134752</spage><epage>134752</epage><pages>134752-134752</pages><artnum>134752</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, – Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.
[Display omitted]
•Hydroxyapatite was synthesized using Peltophorum pterocarpum leaf extract.•Needle-like aggregates were witnessed in FE-SEM image.•A high specific-surface area of 40.04 m2/g was observed by BET analysis.•Hydroxyapatite was used to adsorb AB 113 dye.•Maximum AB 113 dye adsorption capacity was 153.85 mg/g.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35513083</pmid><doi>10.1016/j.chemosphere.2022.134752</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3170-7899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2022-07, Vol.299, p.134752-134752, Article 134752 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2661089603 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Acid blue 113 Adsorption agitation Azo Compounds Durapatite dyes Green synthesis heat production Hydrogen-Ion Concentration Hydroxyapatite Kinetics Nanoadsorbents Peltophorum pterocarpum Plant Extracts remediation sorption isotherms surface area toxicity Water Pollutants, Chemical - analysis |
title | Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorptive%20removal%20of%20Acid%20Blue%20113%20using%20hydroxyapatite%20nanoadsorbents%20synthesized%20using%20Peltophorum%20pterocarpum%20pod%20extract&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Sodhani,%20Hriday&rft.date=2022-07&rft.volume=299&rft.spage=134752&rft.epage=134752&rft.pages=134752-134752&rft.artnum=134752&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2022.134752&rft_dat=%3Cproquest_cross%3E2675571942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661089603&rft_id=info:pmid/35513083&rft_els_id=S0045653522012450&rfr_iscdi=true |