Conquering compacted soils: uncovering the molecular components of root soil penetration

Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in plant science 2022-08, Vol.27 (8), p.814-827
Hauptverfasser: Bello-Bello, Elohim, López-Arredondo, Damar, Rico-Chambrón, Thelma Y., Herrera-Estrella, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 8
container_start_page 814
container_title Trends in plant science
container_volume 27
creator Bello-Bello, Elohim
López-Arredondo, Damar
Rico-Chambrón, Thelma Y.
Herrera-Estrella, Luis
description Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata. Land degradation and climate change represent serious threats to sustaining current food systems and global food security.Soil compaction deteriorates soil structure and fertility, precluding optimal root system development and diminishing crop yields.There is a need to design soil compaction-resilient crop varieties that can grow on marginal lands and, simultaneously, maintain high yields and boost CO2 harvesting and storage in the soil.Designing smart-rooting crops will pave the way towards a climate-smart agriculture. Using a combination of natural genetic variation, gene editing, and synthetic biology will aid in developing abiotic stress-tolerant crops with a high capacity of carbon sequestration.
doi_str_mv 10.1016/j.tplants.2022.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661087029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138522001054</els_id><sourcerecordid>2661087029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-58a88b9b5533e7d749d81725630d6fc41b5a7573770991d3fcf200144df042283</originalsourceid><addsrcrecordid>eNqFkM1u3CAYRVHUKH_NI7Tyshs7H2AM7qaqRs2PNFI2idQdsuFzysg2LuCR8vYlmWm3XYHEuVzdQ8gnChUF2tzsqrSM3ZxixYCxCuoKgJ6QC6qkKmsu2Yd85w2UlCtxTi5j3AGApKo5I-dcCCZk216Qnxs__14xuPmlMH5aOpPQFtG7MX4t1tn4_eEt_cJi8iOadezCO-lnzO2FH4rgfXqPFAvOmEKXnJ8_ktOhGyNeH88r8nz742lzX24f7x4237elYa1IpVCdUn3bC8E5Sivr1ioqmWg42GYwNe1FJ4XkUkLbUssHM7A8tK7tADVjil-RL4d_l-DzkJj05KLBMbtBv0bNmoaCksDajIoDaoKPMeCgl-CmLrxqCvpNqt7po1T9JlVDrXNXzn0-Vqz9hPZf6q_FDHw7AJiH7h0GHY3D2aB1AU3S1rv_VPwBsJiLkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661087029</pqid></control><display><type>article</type><title>Conquering compacted soils: uncovering the molecular components of root soil penetration</title><source>Elsevier ScienceDirect Journals</source><creator>Bello-Bello, Elohim ; López-Arredondo, Damar ; Rico-Chambrón, Thelma Y. ; Herrera-Estrella, Luis</creator><creatorcontrib>Bello-Bello, Elohim ; López-Arredondo, Damar ; Rico-Chambrón, Thelma Y. ; Herrera-Estrella, Luis</creatorcontrib><description>Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata. Land degradation and climate change represent serious threats to sustaining current food systems and global food security.Soil compaction deteriorates soil structure and fertility, precluding optimal root system development and diminishing crop yields.There is a need to design soil compaction-resilient crop varieties that can grow on marginal lands and, simultaneously, maintain high yields and boost CO2 harvesting and storage in the soil.Designing smart-rooting crops will pave the way towards a climate-smart agriculture. Using a combination of natural genetic variation, gene editing, and synthetic biology will aid in developing abiotic stress-tolerant crops with a high capacity of carbon sequestration.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2022.04.001</identifier><identifier>PMID: 35525799</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>genetic engineering ; genomics-assisted breeding ; root system penetrability ; smart-rooting crops ; soil compaction</subject><ispartof>Trends in plant science, 2022-08, Vol.27 (8), p.814-827</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-58a88b9b5533e7d749d81725630d6fc41b5a7573770991d3fcf200144df042283</citedby><cites>FETCH-LOGICAL-c295t-58a88b9b5533e7d749d81725630d6fc41b5a7573770991d3fcf200144df042283</cites><orcidid>0000-0001-7936-3856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1360138522001054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35525799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bello-Bello, Elohim</creatorcontrib><creatorcontrib>López-Arredondo, Damar</creatorcontrib><creatorcontrib>Rico-Chambrón, Thelma Y.</creatorcontrib><creatorcontrib>Herrera-Estrella, Luis</creatorcontrib><title>Conquering compacted soils: uncovering the molecular components of root soil penetration</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata. Land degradation and climate change represent serious threats to sustaining current food systems and global food security.Soil compaction deteriorates soil structure and fertility, precluding optimal root system development and diminishing crop yields.There is a need to design soil compaction-resilient crop varieties that can grow on marginal lands and, simultaneously, maintain high yields and boost CO2 harvesting and storage in the soil.Designing smart-rooting crops will pave the way towards a climate-smart agriculture. Using a combination of natural genetic variation, gene editing, and synthetic biology will aid in developing abiotic stress-tolerant crops with a high capacity of carbon sequestration.</description><subject>genetic engineering</subject><subject>genomics-assisted breeding</subject><subject>root system penetrability</subject><subject>smart-rooting crops</subject><subject>soil compaction</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u3CAYRVHUKH_NI7Tyshs7H2AM7qaqRs2PNFI2idQdsuFzysg2LuCR8vYlmWm3XYHEuVzdQ8gnChUF2tzsqrSM3ZxixYCxCuoKgJ6QC6qkKmsu2Yd85w2UlCtxTi5j3AGApKo5I-dcCCZk216Qnxs__14xuPmlMH5aOpPQFtG7MX4t1tn4_eEt_cJi8iOadezCO-lnzO2FH4rgfXqPFAvOmEKXnJ8_ktOhGyNeH88r8nz742lzX24f7x4237elYa1IpVCdUn3bC8E5Sivr1ioqmWg42GYwNe1FJ4XkUkLbUssHM7A8tK7tADVjil-RL4d_l-DzkJj05KLBMbtBv0bNmoaCksDajIoDaoKPMeCgl-CmLrxqCvpNqt7po1T9JlVDrXNXzn0-Vqz9hPZf6q_FDHw7AJiH7h0GHY3D2aB1AU3S1rv_VPwBsJiLkg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bello-Bello, Elohim</creator><creator>López-Arredondo, Damar</creator><creator>Rico-Chambrón, Thelma Y.</creator><creator>Herrera-Estrella, Luis</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7936-3856</orcidid></search><sort><creationdate>20220801</creationdate><title>Conquering compacted soils: uncovering the molecular components of root soil penetration</title><author>Bello-Bello, Elohim ; López-Arredondo, Damar ; Rico-Chambrón, Thelma Y. ; Herrera-Estrella, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-58a88b9b5533e7d749d81725630d6fc41b5a7573770991d3fcf200144df042283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>genetic engineering</topic><topic>genomics-assisted breeding</topic><topic>root system penetrability</topic><topic>smart-rooting crops</topic><topic>soil compaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello-Bello, Elohim</creatorcontrib><creatorcontrib>López-Arredondo, Damar</creatorcontrib><creatorcontrib>Rico-Chambrón, Thelma Y.</creatorcontrib><creatorcontrib>Herrera-Estrella, Luis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello-Bello, Elohim</au><au>López-Arredondo, Damar</au><au>Rico-Chambrón, Thelma Y.</au><au>Herrera-Estrella, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conquering compacted soils: uncovering the molecular components of root soil penetration</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>8</issue><spage>814</spage><epage>827</epage><pages>814-827</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata. Land degradation and climate change represent serious threats to sustaining current food systems and global food security.Soil compaction deteriorates soil structure and fertility, precluding optimal root system development and diminishing crop yields.There is a need to design soil compaction-resilient crop varieties that can grow on marginal lands and, simultaneously, maintain high yields and boost CO2 harvesting and storage in the soil.Designing smart-rooting crops will pave the way towards a climate-smart agriculture. Using a combination of natural genetic variation, gene editing, and synthetic biology will aid in developing abiotic stress-tolerant crops with a high capacity of carbon sequestration.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35525799</pmid><doi>10.1016/j.tplants.2022.04.001</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7936-3856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1360-1385
ispartof Trends in plant science, 2022-08, Vol.27 (8), p.814-827
issn 1360-1385
1878-4372
language eng
recordid cdi_proquest_miscellaneous_2661087029
source Elsevier ScienceDirect Journals
subjects genetic engineering
genomics-assisted breeding
root system penetrability
smart-rooting crops
soil compaction
title Conquering compacted soils: uncovering the molecular components of root soil penetration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conquering%20compacted%20soils:%20uncovering%20the%20molecular%20components%20of%20root%20soil%20penetration&rft.jtitle=Trends%20in%20plant%20science&rft.au=Bello-Bello,%20Elohim&rft.date=2022-08-01&rft.volume=27&rft.issue=8&rft.spage=814&rft.epage=827&rft.pages=814-827&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2022.04.001&rft_dat=%3Cproquest_cross%3E2661087029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661087029&rft_id=info:pmid/35525799&rft_els_id=S1360138522001054&rfr_iscdi=true