Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage
Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fadi...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-07, Vol.34 (28), p.e2202673-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | e2202673 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Liang, Yazhan Song, Ning Zhang, Zhengchunyu Chen, Weihua Feng, Jinkui Xi, Baojuan Xiong, Shenglin |
description | Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.
A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries. |
doi_str_mv | 10.1002/adma.202202673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661085682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661085682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EglJYGZElFpYUO34k3iiFUiReUmFhiW4SuwSSuNiJKv49RuUhsfDpSnc599PVQeiAkhElJD6BsoFRTOIwMmEbaEBFTCNOlNhEA6KYiJTk6Q7a9f6FEKIkkdtohwlBOU3EAD1dtZ1eOOiqdoHPqtMJvoXW-uWzdtrjqsX31tne4xm4Ek_A5bbFUweNXln36rGxDj_WnQMDvsNzW1Z9g-eddbDQe2jLQO31_tceosfpxcNkFl3fXV5NxtdRwRLGopSpglEhpKG5KEsKPI2NlILHRJa5MoWBhCYKTEiaAAEplaSQM854XkrGhuh43bt09q3Xvsuayhe6rqHV4fUslpKSVMg0DujRH_TF9q4N3wUqDeGC0kCN1lThrPdOm2zpqgbce0ZJ9mk9-7Se_VgPB4dftX3e6PIH_9YcALUGVlWt3_-py8bnN-Pf8g87no02</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688884511</pqid></control><display><type>article</type><title>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liang, Yazhan ; Song, Ning ; Zhang, Zhengchunyu ; Chen, Weihua ; Feng, Jinkui ; Xi, Baojuan ; Xiong, Shenglin</creator><creatorcontrib>Liang, Yazhan ; Song, Ning ; Zhang, Zhengchunyu ; Chen, Weihua ; Feng, Jinkui ; Xi, Baojuan ; Xiong, Shenglin</creatorcontrib><description>Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.
A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202202673</identifier><identifier>PMID: 35514175</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternative technology ; Anodes ; Bi@C nanospheres ; Bismuth ; Carbon ; Cycles ; Electrode materials ; Electrolytes ; hard carbon frameworks ; Materials science ; Metal-organic frameworks ; Nanorods ; Nanospheres ; Sodium ; Sodium-ion batteries ; Solid electrolytes ; Storage batteries ; Superstructures ; ultrahigh rate capability</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (28), p.e2202673-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</citedby><cites>FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</cites><orcidid>0000-0002-8324-4160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202202673$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202202673$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35514175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Yazhan</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Zhang, Zhengchunyu</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><title>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.
A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries.</description><subject>Alternative technology</subject><subject>Anodes</subject><subject>Bi@C nanospheres</subject><subject>Bismuth</subject><subject>Carbon</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>hard carbon frameworks</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>Nanorods</subject><subject>Nanospheres</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><subject>Storage batteries</subject><subject>Superstructures</subject><subject>ultrahigh rate capability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EglJYGZElFpYUO34k3iiFUiReUmFhiW4SuwSSuNiJKv49RuUhsfDpSnc599PVQeiAkhElJD6BsoFRTOIwMmEbaEBFTCNOlNhEA6KYiJTk6Q7a9f6FEKIkkdtohwlBOU3EAD1dtZ1eOOiqdoHPqtMJvoXW-uWzdtrjqsX31tne4xm4Ek_A5bbFUweNXln36rGxDj_WnQMDvsNzW1Z9g-eddbDQe2jLQO31_tceosfpxcNkFl3fXV5NxtdRwRLGopSpglEhpKG5KEsKPI2NlILHRJa5MoWBhCYKTEiaAAEplaSQM854XkrGhuh43bt09q3Xvsuayhe6rqHV4fUslpKSVMg0DujRH_TF9q4N3wUqDeGC0kCN1lThrPdOm2zpqgbce0ZJ9mk9-7Se_VgPB4dftX3e6PIH_9YcALUGVlWt3_-py8bnN-Pf8g87no02</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Liang, Yazhan</creator><creator>Song, Ning</creator><creator>Zhang, Zhengchunyu</creator><creator>Chen, Weihua</creator><creator>Feng, Jinkui</creator><creator>Xi, Baojuan</creator><creator>Xiong, Shenglin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8324-4160</orcidid></search><sort><creationdate>20220701</creationdate><title>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</title><author>Liang, Yazhan ; Song, Ning ; Zhang, Zhengchunyu ; Chen, Weihua ; Feng, Jinkui ; Xi, Baojuan ; Xiong, Shenglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative technology</topic><topic>Anodes</topic><topic>Bi@C nanospheres</topic><topic>Bismuth</topic><topic>Carbon</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>hard carbon frameworks</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>Nanorods</topic><topic>Nanospheres</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><topic>Storage batteries</topic><topic>Superstructures</topic><topic>ultrahigh rate capability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yazhan</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Zhang, Zhengchunyu</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yazhan</au><au>Song, Ning</au><au>Zhang, Zhengchunyu</au><au>Chen, Weihua</au><au>Feng, Jinkui</au><au>Xi, Baojuan</au><au>Xiong, Shenglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>28</issue><spage>e2202673</spage><epage>n/a</epage><pages>e2202673-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.
A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35514175</pmid><doi>10.1002/adma.202202673</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8324-4160</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-07, Vol.34 (28), p.e2202673-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2661085682 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alternative technology Anodes Bi@C nanospheres Bismuth Carbon Cycles Electrode materials Electrolytes hard carbon frameworks Materials science Metal-organic frameworks Nanorods Nanospheres Sodium Sodium-ion batteries Solid electrolytes Storage batteries Superstructures ultrahigh rate capability |
title | Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Bi@C%20Nanospheres%20in%20Porous%20Hard%20Carbon%20Frameworks%20for%20Ultrafast%20Sodium%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liang,%20Yazhan&rft.date=2022-07-01&rft.volume=34&rft.issue=28&rft.spage=e2202673&rft.epage=n/a&rft.pages=e2202673-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202202673&rft_dat=%3Cproquest_cross%3E2661085682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688884511&rft_id=info:pmid/35514175&rfr_iscdi=true |