Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage

Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fadi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-07, Vol.34 (28), p.e2202673-n/a
Hauptverfasser: Liang, Yazhan, Song, Ning, Zhang, Zhengchunyu, Chen, Weihua, Feng, Jinkui, Xi, Baojuan, Xiong, Shenglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page e2202673
container_title Advanced materials (Weinheim)
container_volume 34
creator Liang, Yazhan
Song, Ning
Zhang, Zhengchunyu
Chen, Weihua
Feng, Jinkui
Xi, Baojuan
Xiong, Shenglin
description Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs. A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries.
doi_str_mv 10.1002/adma.202202673
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661085682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661085682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EglJYGZElFpYUO34k3iiFUiReUmFhiW4SuwSSuNiJKv49RuUhsfDpSnc599PVQeiAkhElJD6BsoFRTOIwMmEbaEBFTCNOlNhEA6KYiJTk6Q7a9f6FEKIkkdtohwlBOU3EAD1dtZ1eOOiqdoHPqtMJvoXW-uWzdtrjqsX31tne4xm4Ek_A5bbFUweNXln36rGxDj_WnQMDvsNzW1Z9g-eddbDQe2jLQO31_tceosfpxcNkFl3fXV5NxtdRwRLGopSpglEhpKG5KEsKPI2NlILHRJa5MoWBhCYKTEiaAAEplaSQM854XkrGhuh43bt09q3Xvsuayhe6rqHV4fUslpKSVMg0DujRH_TF9q4N3wUqDeGC0kCN1lThrPdOm2zpqgbce0ZJ9mk9-7Se_VgPB4dftX3e6PIH_9YcALUGVlWt3_-py8bnN-Pf8g87no02</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688884511</pqid></control><display><type>article</type><title>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liang, Yazhan ; Song, Ning ; Zhang, Zhengchunyu ; Chen, Weihua ; Feng, Jinkui ; Xi, Baojuan ; Xiong, Shenglin</creator><creatorcontrib>Liang, Yazhan ; Song, Ning ; Zhang, Zhengchunyu ; Chen, Weihua ; Feng, Jinkui ; Xi, Baojuan ; Xiong, Shenglin</creatorcontrib><description>Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs. A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202202673</identifier><identifier>PMID: 35514175</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternative technology ; Anodes ; Bi@C nanospheres ; Bismuth ; Carbon ; Cycles ; Electrode materials ; Electrolytes ; hard carbon frameworks ; Materials science ; Metal-organic frameworks ; Nanorods ; Nanospheres ; Sodium ; Sodium-ion batteries ; Solid electrolytes ; Storage batteries ; Superstructures ; ultrahigh rate capability</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (28), p.e2202673-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</citedby><cites>FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</cites><orcidid>0000-0002-8324-4160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202202673$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202202673$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35514175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Yazhan</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Zhang, Zhengchunyu</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><title>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs. A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries.</description><subject>Alternative technology</subject><subject>Anodes</subject><subject>Bi@C nanospheres</subject><subject>Bismuth</subject><subject>Carbon</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>hard carbon frameworks</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>Nanorods</subject><subject>Nanospheres</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><subject>Storage batteries</subject><subject>Superstructures</subject><subject>ultrahigh rate capability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EglJYGZElFpYUO34k3iiFUiReUmFhiW4SuwSSuNiJKv49RuUhsfDpSnc599PVQeiAkhElJD6BsoFRTOIwMmEbaEBFTCNOlNhEA6KYiJTk6Q7a9f6FEKIkkdtohwlBOU3EAD1dtZ1eOOiqdoHPqtMJvoXW-uWzdtrjqsX31tne4xm4Ek_A5bbFUweNXln36rGxDj_WnQMDvsNzW1Z9g-eddbDQe2jLQO31_tceosfpxcNkFl3fXV5NxtdRwRLGopSpglEhpKG5KEsKPI2NlILHRJa5MoWBhCYKTEiaAAEplaSQM854XkrGhuh43bt09q3Xvsuayhe6rqHV4fUslpKSVMg0DujRH_TF9q4N3wUqDeGC0kCN1lThrPdOm2zpqgbce0ZJ9mk9-7Se_VgPB4dftX3e6PIH_9YcALUGVlWt3_-py8bnN-Pf8g87no02</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Liang, Yazhan</creator><creator>Song, Ning</creator><creator>Zhang, Zhengchunyu</creator><creator>Chen, Weihua</creator><creator>Feng, Jinkui</creator><creator>Xi, Baojuan</creator><creator>Xiong, Shenglin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8324-4160</orcidid></search><sort><creationdate>20220701</creationdate><title>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</title><author>Liang, Yazhan ; Song, Ning ; Zhang, Zhengchunyu ; Chen, Weihua ; Feng, Jinkui ; Xi, Baojuan ; Xiong, Shenglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-839c31556f1b5dd1a482f6654206db9fcfa7179affff87a0a66961ab3434bd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative technology</topic><topic>Anodes</topic><topic>Bi@C nanospheres</topic><topic>Bismuth</topic><topic>Carbon</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>hard carbon frameworks</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>Nanorods</topic><topic>Nanospheres</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><topic>Storage batteries</topic><topic>Superstructures</topic><topic>ultrahigh rate capability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yazhan</creatorcontrib><creatorcontrib>Song, Ning</creatorcontrib><creatorcontrib>Zhang, Zhengchunyu</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yazhan</au><au>Song, Ning</au><au>Zhang, Zhengchunyu</au><au>Chen, Weihua</au><au>Feng, Jinkui</au><au>Xi, Baojuan</au><au>Xiong, Shenglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>28</issue><spage>e2202673</spage><epage>n/a</epage><pages>e2202673-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Sodium‐ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy‐type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi‐based metal–organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium‐storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g−1 with a capacity of 308.8 mAh g−1. The unprecedented sodium‐storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether‐based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs. A novel 3D carbon framework superstructure assembled with carbon nanobelt arrays decorated with metallic bismuth (Bi) nanospheres wrapped by a carbon layer (Bi@C⊂CFs) is synthesized via thermolysis of Bi‐based metal−organic framework nanorods. Due to this novel and unique architecture design, the hybrid electrode indicates superior electrochemical performance as an anode material for sodium‐ion batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35514175</pmid><doi>10.1002/adma.202202673</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8324-4160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-07, Vol.34 (28), p.e2202673-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2661085682
source Wiley Online Library Journals Frontfile Complete
subjects Alternative technology
Anodes
Bi@C nanospheres
Bismuth
Carbon
Cycles
Electrode materials
Electrolytes
hard carbon frameworks
Materials science
Metal-organic frameworks
Nanorods
Nanospheres
Sodium
Sodium-ion batteries
Solid electrolytes
Storage batteries
Superstructures
ultrahigh rate capability
title Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Bi@C%20Nanospheres%20in%20Porous%20Hard%20Carbon%20Frameworks%20for%20Ultrafast%20Sodium%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liang,%20Yazhan&rft.date=2022-07-01&rft.volume=34&rft.issue=28&rft.spage=e2202673&rft.epage=n/a&rft.pages=e2202673-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202202673&rft_dat=%3Cproquest_cross%3E2661085682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688884511&rft_id=info:pmid/35514175&rfr_iscdi=true